Behind ICS-PA

EEH
why@nju.edu.cn

AR IE i H AU AT ST PT

A

* (BB

e XFriscv
o T APAER KK Eriscv-322;

- NES B BN RGHIRI

« In the middle of Software and Hardware

\

s RBEHA?

ANHEIA

FAPAA A+ 4 &K KR KX HKRISC-VA?

» PARRT%
 x86

A SZFF ks

* mMips32
* riscv32(64)

- B 5 A28 5ISAEEXRAFK
PA2 - B EITEIRSA) QAGAG @AY). 8.0 raxd . 0.0 0.8
PA3 - #t M B RS 1 2.0 & & ¢) & & Dhoxe 1 2.0 & & ¢

PA4 - 3B Z1ES 1. 8. 8. 8.9 ¢ L B QARXGAS 1. 8. 8. 8. A€

v‘_
b
L
Ua
ol
=T
Py
Jdlinl
il

EHES
BAR{G S

5 - KRR

170 2

gL ib B 2% (CPU)

1|:| = Ellll' %

Application (e.g.,
web browser)

High Level Language Program

Assembly Language Program Compiler

Machine Learning Program Assembler

Hardware Architecture Description

Logic Circuit Description

(= |:|E|/J:|' %

High Level Language Program

Assembly Language Program

Machine Learning Program

The RISC-V Instruction Set Manual
Volume I: Unprivileged ISA

The RISC-V Instruction Set Manual
Volume 1II: Privileged Architecture

Intel 80386 Reference Programmer's Manual
Table of Contents

endbré4 0x4(%esp) ,%ecx

push %rbp $oxfffffffe,%esp
mov %rsp,%rbp -0x4(%ecx)

sub $0x10,%rsp ?Ebpo

mov %edi,-8x4(%rbp) ;:ZZ,AEbp

mov %rsi,-ex1e(%rbp) Ceacx

lea oxeal(%rip),%rax

11c9 <__x86.get_pc_thunk.ax>
o L) 3
Ly %rax,%rdi $0x2e37,%eax

call 1050 <puts@plt> $oxc,%esp

Hardware Architecture Description

Logic Circuit Description

Each assembly language is just a human readable
version of machine language
Tie to a specific ISA

mov $0x0,%eax -ex1fde(%eax) ,%edx
leave %edx
ret %eax , %ebx
1840 <puts@plt>
$6x10,%esp
$0xe, %eax
-0x8(%ebp) ,%esp
%ecx
%ebx
%ebp
-0x4(%ecx) ,%esp

= = E/J:l'

High Level Language Program

Assembly Language Program

Machine Learning Program

Hardware Architecture Description

Logic Circuit Description

Each assembly language is just a human readable
version of machine language
Tie to a specific ISA

©0000000000001149 <main>:

1149:
114d:
114e:
1151:
1155:
1158:
115c:
1163:
1166:
116b:
117e:
1171:

3
55
48
48
89
48
48
48
e8
b8
c9
c3

of

89
83
7d
89
8d
89
e5
ee

le

e5
ec
fc
75
5
(4
fe
00

10

fo
al e 00 e0

77 A
ee 00

00000110:
00000120:
00000130:
00000140:
00000150:
00000160
00000170:
00000180:
00000190:
000001a0:
000001b0:
000001c0:

0000

../1ib/1d-1inu

XS O B
..GNU..j~4". ..
Yos\o/ooi]ennn.

I Reg2reg
z

Pesrc

inst{31:26] ~ Wmem

- |:| =00 e
inst{5:0]

${Func Alugb
r{Regrt wreg
Se A4
p4 CONUNIT T 2l
d 1)
nst[251] W'e offset :P >
- Ra logf
nst[20416] > rb Qa
e Addr Inst}—d L1 Wolw REGFILE
| A g i Daddr
et 15 Qb 2
T—— inst[15:11] D> clk o
d oL i
(
c ™M '
] immediate Dwrite)
. Din Dout
High Level Language Program adr o PR
clk
Asse m b Iy La n g ua ge P rog ram Behavioral or Transaction Level abstract

model

(function only)
always if enable is true
for (i=0; i<=15; i++)

Machine Learning Program

RTL (Register Transfer Level)
(function only, with clock cycle timing)

always at every positive edge of clock
result_register = a + b + carry

Hardware Architecture Description

moc.iule top (.) Gate Level
input logic clk_i, (also called Structural Level)
input logic rst_ni, (function & structure)

detailed
model

Logic Circuit Description input logic node_i, TR e ik
input logic [15:0] data_in_i,
output logic [15:0] result_o Digital Switch Level

)5 (closest to actual silicon)

pall

ffs #(.Width(16)) i_reg 1 (
.clk_i(clk_ i),
.rst_ni(rst_ni),
.in_i(data_in_i),
.out_o(first));

endmodule // top

WA >
:Hb/A\I

time instruction

cycle time

program program

X

b S
instruction cycle

BEEREAT,

time instruction

program program

)

- BIERIMEETE v.s. EFMEETY
- (BRI cycle
» —PBERERESER® istruction
« REIREERK time ﬁ

cycle

« EREE cycle
. EERSHSAEEER v |
. RN o 0

cycle

10

BEMEEAT

time instruction cycle time
= * b S

program | program instruction cycle

e CISC v.s. RISC

. CISC instruction
BITHERNES | Ess] LUSEBRIHIES program
. 1 EEFAFESHITRIERE cycle
' . “instruction
. RISC instruction
- IEOEER , wiFsEIELpRR) program
. MEBESHTIIRRE oe
instruction

12

ISAF L4

- IB8SE High Level Language Program
o ABYESHEE Assembly Language Program
o WFE : ISAR— MR EO Machine Learning Program
o YT ISAR—NIHEERNZY Hardware Architecture Description
Logic Circuit Description I

o

.+ CISC (1960~197034) ‘
+ x869FE (80864biERR, ~3005K15<

» RISC (1980 &
« Patterson , Hennessy , 1980s
« ARM, MIPS, RISC-V (2010)g
* LoogArch

13

ISAF L4

5 S
- 555

High Level Language Program

. VB S
© STl ISAR—MHSIED

Assembly Language Program

o YWFHEAE ; ISAR—NIHREZ

Machine Learning Program

Hardware Architecture Description

Logic Circuit Description

—J S AN
:uzlﬂ:El < E

* X86

AlP

« M 1978FF8053ESHENNZI20155E36004% (SEIYEARIEIN—5%)

- ARM

o V7 (BEGTEERIRIRF) > 278%
 RISC-V

« RV32l: 474

« RV32IMA : 68%

14

reEjor=a Y

/

 X86
. enter-Gl5EMmm

* enter 0, 0ZF/F : push ebp ; mov ebp, esp
« (ERuopEHENEAE

15

|\ /= X axsw —
raEorE 4y

* Xx86
 enter-glIEtkin

* enter 0, 0ZF/F : push ebp ; mov ebp, esp
+ {BERuopEZHEHNEAE

* rep movsb
« FR—5FE< BEE—uop loop

e cpuid

- ZFMEREHVEDO (RifeaxBUEAREEINLIEE)

16

r51810

. x86 |

YA NMNASINE

./ 694 7706

8. 2025/12/16 16:53:16

Bt &'

Y =
7|‘|% HorsSZx

* Xx86
 enter-glIEtkin

* enter 0, 0ZF/F : push ebp ; mov ebp, esp
- BERuopEHEHEAE

* rep movsb
« AR—FES BBRE—Tuop loop

e cpuid
- ZMEZXEENEO (RiEcaxBEAREIRINEE)
* ARM
e crc32 : IFERIMRERLERS (Cyclic Redundancy Check)
e ldmiaeq SP!, {R4-R7, PCHES (v8XLfR)

* MIPS

18

RISC-V

- B7FA
 RISC-V Instruction Set Manual

* Volume 1: Unprivileged ISA
* Volume 2: Privileged Architecture

o tl::l:a&I The RISC-V Instruction Set Manual
sl e’ Volume I: Unprivileged ISA
° f%]r%\ :F;%\ %}Ei@?‘ﬁ The RISC-V Instruction Set Manual

Volume 1I: Privileged Architecture

o SMEMRITRRS
« R AJLURIESR E
« TRAYESIRID
- TRERY E=ia
- ¥ EEEMY. FRAFESIBRA
- FHfaE (RISC-VESSAE)
* MIPSABEIEfREARISC-VIEE

] =

19

RRCA R

- Eiifg<S5%
« RV32l, RV64l, RV128l, RV32E
- RV32ER1631728AIRV 32|37
- BEigSHB40+5%

« M-EEBRbR. F-EEfBEZMR. G=IMAFD
. ARFIRIE, DIUEETS. C=ERIES

- BERAES
- 5[: RV64GC
- SiRE : RV64GCBYV
- ##AIL : RV32E. RV32IC

Base Version
RVWMO | 2.0
RV 321 2.1
RV641 2.1
RV32E 1.9
RV128I | 1.7
Extension | Version
Zifencei | 2.0
Zicsr 2.0
M 2.0
A 2.0
F 2.2
D 2.2
Q 2.2
C 2.0
Ztso 0.1
Counters | 2.0
L 0.0
B 0.0
J 0.0
T 0.0
P 0.2
% 0.7
N 1.1
Zam 0.1

Register

. BTFRE
« RISC-V : 321°GPR (x0~x31, PC)
« MIPS : 321GPR , B%zero, PC

Datapath

« ARM-v7 : 16/°GPR , TTE&1F758
- PCEZBENBEREFES
.+ x86(321:)RE8 : 8/\GPR , ILEZF17eE

* BOZARS: mov eax, ©

o FE{Ixorf§<$EE- xor eax, eax

— Registers

21

©000000000001149 <main>:

b/\\ Q . 1149: f3 of le fa
TE < 1al ise. 80 es

1151: 48 83 ec 10
1155: 89 7d fc
1158: 48 89 75 fo
115c: 48 8d 65 al Ge 00 00
o \%j:z . 1163: 48 89 c7
| :': . 1166: e8 e5 fe ff ff

116b: b8 60 o0 eo oo
117e: c9

- x86 : TKIESE , BLIRAVE(EILT|g] s
- MIPS/ARM : TE<1ESE | BIRAYE(FE=8 (RERA=N—X)
o ARMIZNIREINVAY BIERIEADSEE |, 1%iTThumbF1Thumb-215$ 5

- RISCV : EttfItnE BAZH4FTEKIESE
- VR ENEEER , XIFTKIESE
« HEREIFTIMERISC-VAIEEE

| XXXXXXXXXXXXXXAa | 16-bit (aa # 11)

‘ XXXXXXXXXXXXXXXX | XXXXXXXXXXXbbb1l1l | 32-bit (bbb # 111)

-+ *XXXX | XXXXXXXXXXXXXXXX | xxxxxxxxxx011111 | 48-bit

-+ +XXXX | XXXXXXXXXXXXXXXX | xxxxxxxxx0111111 | 64-bit

-+ XXXX | XXXXXXXXXXXXXXXX | xnnnxxxxx1111111 | (80+16*nnn)-bit, nnn#111

- XXXX | XXXXXXXXXXXXXXXX | x111xxxxx1111111 | Reserved for >192-bits

Byte Address: base+4 base+2 base

22

FE<TEIV

IR KE
- ISR

- WEZRSHAEE + RS

. EEBIEEL

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
| funct? | rs2 | sl | funct3 | rd | opcode | R-type
| imm|[11:0] | sl | funct3 | rd | opcode | I-type
| imm|11:5] | rs2 | 1 | funct3 | imm [4:0)] | opcode | S-type
[imm[12] | imm[10:5] | rs2 | sl | funct3 |imm[4:1] [imm[11] [opcode | B-type
[imm|31:12] | rd | opcode | U-type
[fmm[20] | fmm[10:1] [mm[11]]| imm[19:12] | rd [opcode | J-type

« MIPSH : BYZ517ES
- RE : [15:11]
. 18 : [20:16]

23

E vﬁL.l TN

IR~
- RISC-VH=1i1{g< add t0, t1, t2
e 9= b +C: slti t3, t2, O

slt t4, t0, t1
bne t3, t4, overflow

* KEBDX86 KA HIHES

05 3f 2e 00 00 $ox2e3f, %eax

8b 45 08 0x8(%ebp) , keax

- 20, 211IESHRIEERES
« X860 add %al, (%eax)
« MIPS£0AERTHES
¢ MIPS£14{3 sdc3 $31, -1(ra)

Ry

« Addition/Subtraction
« XBsubitg< (I-type)

Integer Register-Immediate Instructions

31 20 19 15 14 12 11 76 0
imm[11:0] | rsl | funct3 | rd | opcode |
12) 3) 7
[-immediate[11:0] src ADDI/SLTI[U] dest OP-IMM
I-immediate[11:0] src ANDI/ORI/XORI dest OP-IMM

ADDI adds the sign-extended 12-bit immediate to register rsi. Arithmetic overflow is ignored and
the result is simply the low XLEN bits of the result. ADDI rd, rs1, 0 is used to implement the MV
rd, rsl assembler pseudoinstruction.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
[funct7 | rs2 | sl | funct3 | rd | opcode | R-type
[imm[11:0] [s] funct3 | rd [opcode | I-type
| imm[11:5] | rs2 | 1 | funct3 | imm[4:0] [opcode | S-type
[fmm[12] | imm[10:5] | rs2 [1 | funct3 [imm[&1] [imm[11] | opeode | B-type
| mmB117) | rd [opcode | U-type
[fmm[20] | fmm[10:1] [mm[11]] imm[19:12] | rd [opcode | J-type

25

._._.ﬁ::_] EI/V\

 Immediate number

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
| funct7] rs2 | w1 | funct3 | rd | opcode | R-type
| imm|[11:0] | sl | funct3 | rd | opcode | I-type
| imm[11:5] | rs2 | sl | funct3 | imm 4:0)] | opcode | S-type
[imm[12] [imm[10:5] | rs2 | w1 | funct3 [imm([4:1] [imm[11] | opcode | B-type
| imm|[31:12] [rd [opcode | U-type
[imm[20] | imm[10:1] [imm[11] | imm[19:12] | rd [opcode | J-type

« B DARIE (A RERIR T e S X IR AYZER]
e imm[31]F5 _J‘*b",)?:_Finst[?)l] TociEes
 imm[5]RAJEERKIRETinst[25]ak0(UR) , RFE2
.« IRIFRIE % \Exﬁﬂz_LEIJ*SZ (BN ZEEATT

21k 1151 R e

26

Ry

 Immediate number

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
| funct7] rs2 | w1 | funct3 | rd | opcode | R-type
| imm|[11:0] | sl | funct3 | rd | opcode | I-type
| imm|11:5] | rs2 | 1 | funct3 | imm 4:0)] | opcode | S-type
[imm[12] [imm[10:5] | rs2 | w1 | funct3 [imm([4:1] [imm[11] | opcode | B-type
I imm|31:12] I rd | opcode | U-type
[imm[20] | imm[10:1] [imm[11] | imm[19:12] | rd [opcode | J-type

« B DARIE (A RERIR T e S X IR AYZER]
« UBHEHIEMIESRIHES (U+)
« auipc + lw: SZHEPICHYEEEZL)
- MADEKE20+1 209102
 lui(riscv): 7 + 5 + 20
* MIPS: 6 + 5 + 5(rs = 9) + 16

31 12 11 76
imm[31:12] rd opcode
20 5 7
U-immediate[31:12] dest LUI

27

BRI R

|000000| rs |00000|00000|00000|001000| jr (RERBLLLF)

fomoene dovene doceae becees S e +
R A deccan ¥ $ocean [+

Az E\ / |000000| rs |00000| rd |00000|001001| jalr (RERBHAF)
—J—\ $oceea- $ecee- #ecee- $ecee- R $ececeaa +
- #ecccccncccccnccccanacccccancnaa +

. . . . 1000010 | offset | j

MIPSAijr. jalr. j. jal e e ;
+ecene- dececccncceccccccccccccnnccannn +

RISC-VREHjalf0jalr st S e .
e jal rd, imm —IREIBIHEFZID , BEEEEIPC+imm
* rd = x03CIN
« JFAFrAfRtES | A BERERE=E

Plain unconditional jumps (assembler pseudoinstruction J) are encoded as a JAL with rd=x0.

31 30 21 20 19 12 11 76 0
| imm(20] | imm[10:1] | imm(11] | imm[19:12] | rd | opcode
1 10 1 8) 7
offset[20:1] dest JAL

EFrettBE—FKIE<

e jalr x0, x1, ©

31 20 19 1514 12 11 76 0
| imm[11:0] rsl funct3 rd | opcode |
12) 3 5) 7
offset[11:0] base 0 dest JALR

28

b je label # ZF=1
b 14 PN jne label # ZF=0
A~ o
jl label # SF#OF
jle label # (SF#0OF)B{ZF=1
. _%£1¢Eyti_§ jg label # (SF=OF)HZF=0
1 /j\ jge label # SF=OF
. > S == S Em g —
7> ==
- x86 : [RI\ttiR , FIREKIRERGAL (Eflags)
e cmp eax, ebx; jl label;
‘igure 2-8. EFLAGS Register
16-BIT FLAGS REGISTER
A
31 23 15 I 7 0'
| VIR| IN| T0]0[D|T|T|S|Z| |A| |P] |C|
|eo0oooo00000000000 | | |0 | ||1111Ilel |e] |1] |
I [MIF| IT| PLIFIF|FIF|FIF| [F| [F| |F]
L
VIRTUAL 8086 MODE-——X-———————— + | |

RESUME FLAG———X-——————————— + |
NESTED TASK FLAG——-X t
I/0 PRIVILEGE LEVEL-—-X
OVERFLOW---S

DIRECTION FLAG-——-C
INTERRUPT ENABLE---X
TRAP FLAG——-

SIGN FLAG——-

ZERO FLAG—--

AUXILIARY CARRY-——-

o e e e e e e

PARITY FLAG——-
CARRY FLAG——-

numumumumvmom

S = STATUS FLAG, C = CONTROL FLAG, X = SYSTEM FLAG

NOTE: @ OR 1 INDICATES INTEL RESERVED. DO NOT DEFINE

(18%F) A
(FF) A 1= B

(/NF) A< B
(INFETF) A <= B —
(KF) A >B
(KFEF) A >=B

29

BELTE<

S5

« x86 : fRE(LriR , FEIREKIREIRENL (Eflags)
MIPS : BIAYEVES | 1RMHIRS&IEES
- MEFNAVERERIT

* bne; addi; sw;

[]
. |

RISC-V : BIETELE: , EEINREE (6%%)
« }®Bble, bgt. bltz, bgtz% (FENESL
Ty SHERER

31 30 2524 2019 1514 12 11 8 7 6 0
| imm[12] | imm[10:5] | rs2 | rsl | funct3 | imm[4:1] | imm[11] | opcode |
1 6 5 5 3 1 1 7
offset[12]10:5] src2 srcl BEQ/BNE offset[11|4:1] BRANCH
offset[12]10:5] src2 srcl BLT[U] offset[11|4:1] BRANCH
offset[12]10:5] sre2 srel BGE[U] offset[11|4:1] BRANCH

Branch instructions compare two registers. BEQ and BNE take the branch if registers rsf and rs2
BLT and BLTU take the branch if rs7 is less than rs2, using
signed and unsigned comparison respectively. BGE and BGEU take the branch if rsi is greater
than or equal to rs2, using signed and unsigned comparison respectively. Note, BGT, BGTU,
BLE, and BLEU can be synthesized by reversing the operands to BLT, BLTU, BGE, and BGEU,

are equal or unequal respectively.

respectively.

30

ERIEIRLT

IR SR KRER
- MIPSEERIEIES
. B ITHUTHIR
. ETREHSRIRIESE ARSI TR S SN TR X fInop
- R ? BIRR T VRS EAE

- MIPSHUPSERIE , BfErelease 67 #ifEkR (—-mips32r6)
* LoongArchfEAETMIPSIRITAUIESE | ARAEEIRLT

31

NFRIEIES

* RISC-VEI— X5 EiEE
- RBEEINEFEEES T 8elH i TARFRE (RISCER
'vMﬁﬁ%$

* lw rd, offset(rsl)

31 20 19 1514 12 11 76 0
| imm[11:0] | rsl funct3 | rd | opcode ’
12 5 3 5 7
offset[11:0] base width dest LOAD
31 25 24 20 19 1514 12 11 76 0
imm[11:5] | rs2 rsl | funct3 [imm([4:0] | opcode |
7 5) 3) 7

offset[11:5] sre base width offset[4:0] STORE

NFRIEIES

 RISC-VEI— K A hs T
- RBEIIRINEFFEIE S 8em TR LE (RISCIER
'vMﬁﬁ%$

« f&7T1w/sw, XBhalf-word/byte data transfer : 1h/sh, 1lb/sb

imm[11 :(.)] rsl 000 rd 0000011 LB
imm|11:0] rsl 001 rd 0000011 LH
imm|11:0 rsl 010 rd 0000011 LW
imm|11:0 rsl 100 rd 0000011 LBU
imm|11:0] rsl 101 rd 0000011 LHU
imm|[11:5] rs2 rsl 000 imm|[4:0] 0100011 SB
imm|11:5] rs2 rsl 001 imm|[4:0] 0100011 SH
imm|11:5] rs2 rsl 010 imm|[4:0] 0100011 SW

« 556 . BlbustAigEsbu ?
« shuEERF "E-BH-F" NEFE

* HMUBIAXITRIEISISIREE 7 RISC-VAIRSTENRITEAR

BigiES

* RISC-V : {356 5EMITS
- AND, OR, XOR. ANDI, ORI, XORI
- J@ENOT, XNORZ

« B¥ & (-march=rv64imazbb_zbs)
« TTE32(EHAI1AINZEL (beqz+andi+add+srli+jHE)
« cpop rd, rs (R-TYPE)
- KXBclz, ctzsF

34

EiHE R

- ERHERE ORI, MIEERE

- T REEEEHE |, BEARTEKRETR

- REORI | E B AR 1Rt

* (EAFIURERESERSRY |, IEERZRAYIRIR
» R UANESRARIE PRERIE

= T
« {The RISC-V Reader) f0EZFA

« UC Berkeley CS61C
« RISC-Viit4&4k (20105)

35

Don’t forget reality!
- CISC5RISCHIHEESEIR

by +A

GPS, GLONASS, Beidou, Galileo Satellites = Cortex-AS7
_ 1 o

Cortex-A53 CPUs

7J
H

* SIZATC+RAIBR+HEB XKREL
.« FHTH. MM, Tt Bk

S i Display Processing

4K, Miracast, picture enhancement

Processing

Modem Dual ISPs
L non CATARITF Cariorad 4K Encode/Decode
™ t::SMP Snapdragon Voice Activation
1.2GPix/s bw
Camera SW

SOFTWARE FOUNDATIONS

mathematical underpinnings of reliable software.

s\ /B3 / \‘ 4
FIEIRIEDEN el

ced undergraduates to PhD students and researchers. No

though a degree of mathematical maturity is helpful. A
ost of Programming Language Foundations or Verified

iming. Lmauag\g Foundations surveys
ory of programming languages,

LARGE LANGUAGE MODEL

High Level Language Program

Assembly Language Program

hick: Property-Based Testing in Coq

Machine Learning Program oo gt

L M ouoaons

QuickChick
Pro

Hardware Architecture Description

Logic Circuit Description

Programming
Frum An Introduction

to Programming

ion Logic Foundations is an in-depth
DR iction to separation logic—a practical
‘ hch to modular verification of

COMPUTER e sty il
ARCHITECTURE The LeinpLimx P sl it
C‘\pUlUdLY Hssemnlu l

Language

Al

Foundational Learning for
New Programmers

Ground

R

Jonathan Bartlett

HERXIZEXIHY
iRTAZ RTFM/RTFSC fERA T HY
METHENRFXT "SI 2T TERY

38

open P/, RISC-

Reference Card

@

Base Integer Instructions: RV32I and RV64I1 RV Privileged Instructions
Category Name | Fmt RV32I Base +RV641 Category Name | Fmt RV mnemonic
Shifts Shift Left Logical SLL rd,rsl,rs2 SLLW rd,rsl,rs2 Trap Mach-mode trap return| R |MRET
Shift Left Log. Imm. SLLI rd,rsl,shamt |SLLIW rd,rsl,shamt Supervisor-mode trap return| R |[SRET
Shift Right Logical SRL rd,rsl,rs2 SRLW rd,rsl,rs2 Interrupt Wait for Interrupt| R |WFI
Shift Right Log. Imm. SRLI rd,rsl,shamt |SRLIW rd,rsl,shamt MMU Virtual Memory FENCE| R |SFENCE.VMA rsl,rs2

Shift Right Arithmetic
Shift Right Arith. Imm.

SRA rd,rsl,rs2
SRAI rd,rsl,shamt

SRAW rd,rsl,rs2
SRAIW rd,rsl,shamt

Examples of the 60 RV Pseudoinstructions

Branch = 0 (BEQ rs,x0,imm)| J

Arithmetic ADD
ADD Immediate

SUBtract

Load Upper Imm

ADD rd,rsl,rs2
ADDI rd,rsl,imm
SUB rd,rsl,rs2

ADDW 1rd,rsl,rs2
ADDIW rd,rsl,imm
SUBW rd,rsl,rs2

BEQZ rs,imm

Jump (uses JAL x0, imm)
MoVe (uses ADDI rd,rs,0)

RETum (uses JALR x0,0,ra)| I

J |7 imm
R |[MV rd,rs
RET

LUI rd,imm

Optional Compressed (16-bit) Instruction Extension: RV32C

Add Upper Imm to PC AUIPC rd,imm Category Name | Fmt RVC RISC-V equivalent
Logical XOR XOR rd,rsl,rs2 Loads Load Word| CL |C.LW rd’,rsl’,imm |LW rd’,rsl’,imm*4
XOR Immediate XORI rd,rsl,imm Load Word SP| CI [C.LWSP rd,imm LW rd,sp,imm*4
OR OR rd,rsl,rs2 Float Load Word SP| CL |C.FLW rd’,rsl’,imm FLW rd’,rsl’,imm*8
OR Immediate ORI rd,rsl,imm Float Load Word| CI [C.FLWSP rd,imm FLW rd,sp,imm*8
AND AND rd,rsl,rs2 Float Load Double| CL |C.FLD rd’,rsl’,imm |FLD rd’,rsl’,imm*16
AND Immediate ANDI rd,rsl,imm Float Load Double SP| CI |C.FLDSP _rd,imm FLD rd,sp,imm*16
Compare Set < SLT rd,rsl,rs2 Stores Store Word | CS |C.sw rsl’,rs2’,imm |SW rsl’,rs2’,imm*4
Set < Immediate SLTI rd,rsl,imm Store Word SP| CSS [C.SWSP rs2,imm sw rs2,sp,imm*4
Set < Unsigned SLTU rd,rsl,rs2 Float Store Word| CS [c.Fsw rsl’,rs2’,imm |FSW rsl’,rs2’,imm*8

Set < Imm Unsigned

SLTIU rd,rsl,imm

Float Store Word SP| CSS

C.FSWSP rs2,imm

rs2,sp,imm*8

o = (DO W OE @D D= D= D= DT C D = D=0 =0 =D

Branches Branch = BEQ rsl,rs2,imm Float Store Double| CS |C.FSD rsl’,rs2’,imm |FSD rsl’,rs2’,imm*16
Branch # BNE rsl,rs2,imm |[Float Store Double SP| CSS [C.FSDSP rs2,imm FSD rs2,sp,imm*16
Branch < BLT rsl,rs2,imm |Arithmetic ADD| CR [c.ADD rd,rsl ADD rd,rd,rsl
Branch 2 BGE rsl,rs2,imm ADD Immediate| CI |C.ADDI rd,imm ADDI rd,rd,imm
Branch < Unsigned BLTU rsl,rs2,imm ADD SP Imm * 16/ CI |C.ADDI16SP x0,imm ADDI sp,sp,imm*16
Branch > Unsigned BGEU rsl,rs2,imm ADD SPImm * 4| CIW [C.ADDI4SPN rd',imm ADDI rd',sp,imm*4
Jump & Link JaL JAL rd,imm suB| CR |c.suB rd,rsl SUB rd,rd,rsl
Jump & Link Register JALR rd,rsl,imm AND| CR [c.AND rd,rsl AND rd,rd,rsl
Synch Synch thread FENCE AND Immediate| CI |C.ANDI rd,imm ANDI rd,rd,imm
Synch Instr & Data FENCE.I OR| CR |c.OR rd,rsl OR rd,rd,rsl
|[Environment CALL ECALL eXclusive OR| CR [c.XOR rd,rsl AND rd,rd,rsl
BREAK EBREAK Move| CR [c.MV rd,rsl ADD rd,rsl,x0
Load Immediate| CI |C.LI rd,imm ADDI rd,x0,imm
Control Status Register (CSR) Load Upper Imm| CI |c.LUI rd,imm LUI rd,imm
Read/Write| I [CSRRW rd,csr,rsl S Shift Left Imm| CI [c.SLLI rd,imm SLLI rd,rd,imm
Read & Set Bit| I [CSRRS rd,csr,rsl Shift Right Ari. Imm.| CI [C.SRAT rd,imm SRAI rd,rd,imm
Read & Clear Bit| I |CSRRC rd,csr,rsl Shift Right Log. Imm.| CI |C.SRLI rd,imm SRLI rd,rd,imm
Read/Write Imm| I |CSRRWI rd,csr,imm |Branches Branch=0[CB [c.BEQz rsl’,imm BEQ rsl',x0,imm
Read & Set Bit Inm| I |CSRRSI rd,csr,imm Branch#0| CB |C.BNEz rsl’,imm BNE rsl',x0,imm
Read & Clear Bit Inm| I |CSRRCI rd,csr,imm |Jump Jump| CJ [c.J imm JAL x0,imm
Jump Register| CR |C.JR rd,rsl JALR x0,rsl1,0
Jump & Link J&L| CJ [c.JAL imm JAL ra,imm
Loads Load Byte| T [LB rd,rsl,imm Jump & Link Register| CR |C.JALR rsl JALR ra,rsl,0
Load Halfword| | |Ly rd,rsl,imm [System Env. BREAK| CI |c.EBREAK EBREAK
Load Byte Unsigned| I |[LBU rd,rsl, imm +RV641 Optional Compressed Extention: RV64C
Load Half Unsigned| I |[LHU rd,rsl,imm [LWU rd,rsl,imm All RV32C (except c.JaL, 4 word loads, 4 word strores) plus:
Load Word| I |[Lw rd,rsl,imm |LD rd, rsl, imm ADD Word (C.ADDW) Load Doubleword (c.LD)
Stores Store Byte | S |sB rsl,rs2,imm ADD Imm. Word (¢.appIw) Load Doubleword SP (C.LDSP)
Store Halfword| S |sH rsl,rs2,imm SUBtract Word (c. susw) Store Doubleword (c.sp)
Store Word| S |sw rsl,rs2,imm |SD rsl,rs2,imm Store Doubleword SP (C.SDSP)
32-bit Instruction Formats 16-bit (RVC) Instruction Formats
31 27 26 25 24 20 19 15 14 12 11 6 0 1514 13 12 11109 8 7 6 5 4 3 2 1 0
R funct7 152 sl funct3 rd opcode CR functd [rd/rs1 s2 op
I imm(11:0] sl funct3 rd opcode cr funct3 | imm | rd/rsl imm op
s imm|[11:5] | rs2 rsl funct3 | imm[4:0] opcode CSS | funct3 imm rs2 op
B imm([12[10:5]] 152 sl funct3 | imm[4:1]11] opcode ciw | functd imm rd’ op
v imm[31:12] rd opcode cL funct3 imm rs1” imm rd” op
imm[20[10:1]11]19:12] rd opcode funct3 imm rsl’ imm rs2’ op
J cs funct3 offset rs1’ offset op
::: funct3 jump target op

RISC-V Integer Base (RV321/641), privileged, and optional RV32/64C. Registers x1-x31 and the PC are 32 bits wide in RV32I and 64 in
RV641 (x0=0). RV64I adds 12 instructions for the wider data. Every 16-bit RVC instruction maps to an existing 32-bit RISC-V instruction.

39

