
Behind ICS-PA

!"#

why@nju.edu.cn

!"#$ %&'()*+,()$-

本讲概述
• 回顾

• 关于riscv
• 为什么PA要求大家走riscv-32线

• 从指令集看计算机系统的设计
• In the middle of Software and Hardware

• 还有些什么？

2

本讲概述

• PA所有可支持线路
• x86
• mips32
• riscv32(64)
• ……

3

!"PA#$%&'()*RISC-V+,

一切背后的故事
• 什么可计算

• 如何进行计算

4

语言的抽象

5

High Level Language Program

Assembly Language Program

Machine Learning Program

Hardware Architecture Description

Logic Circuit Description

Application (e.g.,
web browser)

Compiler

Assembler

语言的抽象

6

High Level Language Program

Assembly Language Program

Machine Learning Program

Hardware Architecture Description

Logic Circuit Description

Each assembly language is just a human readable
version of machine language

Tie to a specific ISA

语言的抽象

7

High Level Language Program

Assembly Language Program

Machine Learning Program

Hardware Architecture Description

Logic Circuit Description

Each assembly language is just a human readable
version of machine language

Tie to a specific ISA

语言的抽象

8

High Level Language Program

Assembly Language Program

Machine Learning Program

Hardware Architecture Description

Logic Circuit Description

再看性能公式

9

再看性能公式

• 简单微结构 v.s. 复杂微结构
• 简单微结构

• 一个周期完成更多事情
• 关键路径较长

• 复杂微结构
• 事情拆分到多个周期完成
• 关键路径较短

10

再看性能公式

• CISC v.s. RISC
• CISC

• 包含行为复杂的指令，编译器可以选择更优的指令
• 但是复杂的指令执行时间较长

• RISC
• 指令简单，编译器可选方案较少
• 简单指令执行实际较短

12

ISA和汇编
• 指令集

• 沟通软件与硬件
• 对于软件：ISA是一个抽象接口
• 对于硬件：ISA是一个功能规约

• CISC（1960~1970兴起）
• x86为主（8086处理器、~300条指令）

• RISC（1980理念）
• Patterson，Hennessy，1980s
• ARM、MIPS、RISC-V（2010）
• LoogArch

13

ISA和汇编
• 指令集

• 沟通软件与硬件
• 对于软件：ISA是一个抽象接口
• 对于硬件：ISA是一个功能规约

• 主流指令集
• x86

• 从1978年80条指令增加到2015年3600条（平均每4天增加一条）
• ARM

• v7（整数计算/乘除/原子）：> 278条
• RISC-V

• RV32I: 47条
• RV32IMA：68条

14

精简or复杂
• x86

• enter-创建栈帧
• enter 0, 0等价于：push ebp；mov ebp, esp
• 但是uop层面复杂度不同

15

精简or复杂
• x86

• enter-创建栈帧
• enter 0, 0等价于：push ebp；mov ebp, esp
• 但是uop层面复杂度不同

• rep movsb
• 不是一条指令，更像是一个uop loop

• cpuid
• 各种复杂查询的接口（根据eax取值不同查询功能）

16

精简or复杂
• x86

• enter-创建栈帧
• enter 0, 0等价于：push ebp；mov ebp, esp
• 但是uop层面复杂度不同

• rep movsb
• 不是一条指令，更像是一个uop loop

17

精简or复杂
• x86

• enter-创建栈帧
• enter 0, 0等价于：push ebp；mov ebp, esp
• 但是uop层面复杂度不同

• rep movsb
• 不是一条指令，更像是一个uop loop

• cpuid
• 各种复杂查询的接口（根据eax取值不同查询功能）

• ARM
• crc32：计算循环冗余校验码（Cyclic Redundancy Check）
• ldmiaeq SP!, {R4-R7, PC}指令（v8去除）

• MIPS

18

RISC-V
• 官方手册

• RISC-V Instruction Set Manual
• Volume 1: Unprivileged ISA
• Volume 2: Privileged Architecture

• 特色
• 简单、干净、无历史包袱
• 与微结构设计解耦
• 模块化：可以根据需要扩展

• 变长的指令编码
• 预留扩展空间
• 扩展相互独立、新版本兼容旧版本

• 开放稳定（RISC-V基金会所有）
• MIPS公司宣布转入RISC-V阵营

19

模块化的场景
• 基础指令集

• RV32I、RV64I、RV128I、RV32E
• RV32E是16寄存器的RV32I变种
• 基础指令只有40+条

• 标准扩展
• M-整数乘除、F-单精度浮点、G=IMAFD
• A-原子操作、D-双精度浮点、C=压缩指令

• 自由组合
• 桌面：RV64GC
• 高性能：RV64GCBV
• 嵌入式：RV32E、RV32IC

20

Register
• 寄存器数量

• RISC-V：32个GPR（x0~x31、PC）
• MIPS：32个GPR，有$zero，PC

• ARM-v7：16个GPR，无零寄存器
• PC甚至也是个通用寄存器

• x86(32位)只有8个：8个GPR，无零寄存器
• 取立即数- mov eax, 0
• 类似xor指令清零- xor eax, eax

21

指令格式
• 选择：

• x86：变长指令集，有无限的操作码空间
• MIPS/ARM：定长指令集，有限的操作码空间（总有用完的一天）

• ARM增加模式位扩展操作码范围，设计Thumb和Thumb-2指令集

• RISCV：基础和标准扩展大多为4字节定长指令集
• 扩展可以更加需要选择，支持变长指令集
• 并且不影响现有RISC-V处理器

22

指令格式
• 统一指令长度

• 简化译码器实现
• 越复杂à成本越高 + 性能影响越大
• 译码逻辑相似

• MIPS中：目的寄存器
• R型：[15:11]
• I型：[20:16]

23

基础指令
• RISC-V采用三地址指令

• a = b + c；

• 大部分x86采用二地址指令

• 全0、全1指令都是非法指令
• x86全0代表 add %al, (%eax)
• MIPS全0代表空指令
• MIPS全1代表 sdc3 $31, -1(ra)

24

基础指令
• Addition/Subtraction

• 没有subi指令（I-type）

25

基础指令
• Immediate number

• 减少立即数每一位可能来源于指令对应位的差别
• imm[31]只可能来源于inst[31]，无需选择器
• imm[5]只可能来源于inst[25]或0(U型)，只需2选1选择器
• 编译时需要分段放立即数，但是代价可忽略不计

26

基础指令
• Immediate number

• 减少立即数每一位可能来源于指令对应位的差别
• U型指令和其他指令的组合（U+I）

• auipc + lw：支持PIC的关键核心

• 立即数关注20+12的位数
• lui(riscv): 7 + 5 + 20
• MIPS: 6 + 5 + 5(rs = 0) + 16

27

跳转指令
• 无条件跳转

• MIPS有jr、jalr、j、jal
• RISC-V只需要jal和jalr

• jal rd, imm – 返回地址保存到rd，跳转到PC+imm
• rd = x0实现j
• j和jr为伪指令，不占用操作码空间

• 甚至ret也是一条伪指令
• jalr x0, x1, 0

28

跳转指令
• 有条件跳转

• x86：隐式比较，需按要求设置标志位（Eflags）
• cmp eax, ebx; jl label;

29

跳转指令
• 有条件跳转

• x86：隐式比较，需按要求设置标志位（Eflags）
• MIPS：即时比较，提供较多条件指令

• 颇具争议的延迟槽设计
• bne; addi; sw;

• RISC-V：即时比较，更加精简（ 6条）
• 没有ble、bgt、bltz、bgtz等（丰富伪指令）
• 无分支延迟槽设计

30

延迟槽设计
• 设计与微结构关联

• MIPS延迟槽指令
• 改变分支执行的顺序
• 可能带来编译器/处理器设计处理的复杂性和无意义的nop
• 延迟槽为1？超标量十几级流水线怎么弄

• MIPS的历史负担，已在release 6中被移除（ -mips32r6 ）
• LoongArch作为基于MIPS设计的指令集，不采用延迟槽设计

31

内存访问指令
• RISC-V的一大特点是精简

• 只有专门的加载和存储指令才能够进行内存访问（RISC理念）
• 寻址方式简单

• lw rd, offset(rs1)

32

内存访问指令
• RISC-V的一大特点是精简

• 只有专门的加载和存储指令才能够进行内存访问（RISC理念）
• 寻址方式简单

• 除了lw/sw，还有half-word/byte data transfer：lh/sh, lb/sb

• 特例：有lbu为什么没有sbu？
• sbu需要保持“读-修改-写”的原子性

• 类似的不对称性恰恰提醒了RISC-V的精简设计思想

33

逻辑指令
• RISC-V：仅支持6条基础指令

• AND、OR、XOR、ANDI、ORI、XORI
• 没有NOT、XNOR等

• B扩展（-march=rv64imazbb_zbs）
• 计算32位整数的1的个数（beqz+andi+add+srli+j组合）
• cpop rd, rs (R-TYPE)
• 还有clz、ctz等

34

设计考量
• 基础集指令译码精简、降低复杂度

• 扩展集增强自由度，适配不同需求与场景

• 系统设计，考虑实际低/高频事件后的指令设计

• 作为开放标准指令集架构，正在接受时代的检验
• 碎片化和生态依然是推广中的普遍忧虑

• 推荐课外读物
• 《The RISC-V Reader》和官方手册
• UC Berkeley CS61C

• RISC-V诞生处（2010年）
35

Don’t forget reality!
• CISC与RISC的相互靠近

• 多核时代+异构硬件+超大规模数据中心+AI
• 并行化、效率瓶颈、安全性、能耗

36

学习≠获得分数

37

High Level Language Program

Assembly Language Program

Machine Learning Program

Hardware Architecture Description

Logic Circuit Description

机器永远是对的

没什么是 RTFM/RTFSC 解决不了的

知道了计算机系统这个“状态机”是如何工作的

38

39

