
Program structure,
preprocessing

!"#

why@nju.edu.cn

!"#$ %&'()*+,()$-

2

LinkedList, Recursion

Program structure, preprocessing

Binary Search
• 典型二分查找算法

• 斐波那契数列：1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ……
• binarysearch.c
• binarysearch_re.c

3

http://www.why.ink:8080/static/code/CPL2022/03/binarysearch.c
http://www.why.ink:8080/static/code/CPL2022/06/binarysearch-re.c

Divide and Conquer 分治法
• Divide the problem into a number of subproblems that are

smaller instances of the same problem.

• Conquer the subproblems by solving them recursively. If the
subproblem sizes are small enough, however, just solve the
subproblems in a straightforward manner.

• Combine the solutions to the subproblems into the solution for
the original problem.

• 重点是：问题分解和基线问题寻找

4

Merge Sort
• merge.c
• mergesort.c

5

http://why.ink:8080/static/code/CPL2022/04/mergesort.c
http://why.ink:8080/static/code/CPL2022/06/mergesort.c

Merge Sort（dance！）

6

https://www.bilibili.com/video/BV1xW411Y7gY?share_source=copy_web

更复杂点场景：链式结构实现二叉树
• 二叉树的遍历

• 前序pre-order
• 521439768

• 中序in-order
• 123456789

• 后序post-order
• 134268795

• BST.c

7

5

2

1 4

9

7

863

http://why.ink:8080/static/code/CPL2022/11/BST.c

各种树
• 二叉树BST

• 平衡二叉树AVL

• 红黑树

• B树，B+树

8

快速排序
• 基本思想是

• 通过一趟排序将要排序的数据分割成独立的两部分，其中一部分的所有
数据都比另外一部分的所有数据都要小，然后再按此方法对这两部分数
据分别进行快速排序

• 整个排序过程可以递归进行，以此达到整个数据变成有序序列。

• quicksort.c

9

http://why.ink:8080/static/code/CPL2022/06/quicksort.c

10

3 7 8 5 2 1 9 5 4

3 7 8 5 2 1 9 5 4

3 1 2 4 5 8 9 5 7

3 1 2 5 8 9 5 7

1 2 3 5 5 7 9 8

9 85 5

8 9

1 2 3 4 5 5 7 8 9

11

12

13

#include <stdio.h>

int main(void){

return 0;
}

变量的生存期

14

#include<stdio.h>
void f(){

static int a;
a ++;
printf(" a = %d\n", a);

}
int b = 0;
int main(){

int c = 5;
printf(" b = %d, c = %d\n", b, c);
f();
f();

}

What else is missing?
• include进来的是什么？

• #开头的编译预处理指令

15

#include <stdio.h>

int main(void){

return 0;
}

预处理
• #include

• #define

16

#include<stdio.h>
#define N 100
int main(){

int a;
scanf("%d", &a);
printf("%d\n", a * N);

}

看看预处理的结果？

gcc -E

三种典型预处理指令
• 文件包含

• #include

• 宏定义
• #define

• 条件编译
• #if, #ifdef, ifndef, #elif, #else, #endif

17

ü 指令以#开头

ü 指令符号键可以插入空格或制表符

ü 指令总是在第一个换行符结束（除非标记延续）

ü 指令可以出现在程序任何地方（一般在开始）

ü 指令可以与注释同行

宏定义
• 简单的宏（对象式宏）

• #define 标识符替换列表

• $%&'()
• #define TRUE 1
• #define LEN 20
• #define PI 3.14159

• *+$,
• #define BOOL int
• #define LOOP for(;;)
• #define BEGIN {
• #define END }

18

宏定义
• 带参数的宏（对象式宏）

• #define 标识符(x1,x2,…) 替换列表

• (-./012345$
• ./012304567898:;3<4;;3<=>??@<
• ./012304ABC;DEF<4;;D<G;F<H;D<I;F<<
• ./012304J0KLMNO;<4J0KL;PK/23<

• 6789:;</0=>?@ABCDE

19

宏定义
• 类似函数，确和函数调用并不完全一样

• FGHAIJ

• QRSTUVWXYZ[T\]^_`abc

20

./012304ABC;DEF<4;;D<G;F<H;D<I;F<<
dd
3 ? ABC;2eeE4f<

34?4;;2ee<G;f<H;2ee<I;f<<

宏-运算符
• 宏可以使用#和##两个运算符

• #：将宏的参数转换为字符串，实现字符串化

• ##：粘合，实现字符串拼接

21

#define PRINT(n) printf(#n " = %d\n", n)
int main(){

int i = 10, j = 2;
PRINT(i/j);
return 0;

}

#define MK_ID(n) i##n
int MK_ID(1), MK_ID(2), MK_ID(3);

宏的括号
• 替换列表的括号，参数的括号

• 好多括号= =

22

#define min(x,y) (x)<(y)?(x):(y)

#define min(x,y) ((x)<(y)?(x):(y))

#define SCALE(x) (x*10)

#define SCALE(x) ((x)*10)

WXYghijklZ[mnopqrstuTvwxyz{{|}
~�����V��W���~���V��h����l�vx

assert

• 注意特殊情况

23

#define assert(cond) if (!(cond)) panic(...);

if (...) assert(0); // 上面的assert对么？
else ...

#define assert(cond) \
do { \

if (!(cond)) { \
fprintf(stderr, "Fail @ %s:%d", __FILE__, __LINE__);

\
exit(1); \

} \
} while (0)

#define assert(cond) ({ ... }) // GCC

KLCMNOOPQRNSTUUdo{}while(0)VWXYZ

24

宏的通用属性
• 宏的替换列表可以包括对其他宏的调用

• #define PI 3.14159
• #define CRICLE(r) (PI*r*r)

• 宏的扩展遵循LIFO(last-in-first-out)

25

宏的通用属性
• 宏的替换列表可以包括对其他宏的调用

• 宏定义的作用范围通常到文件末尾

• 宏不可以被定义两遍，除非新旧定义一样的
• 小的间隔上的差异允许，但是替换列表和参数需要一致

• 可以用#undef取消宏的定义
• #define N 10
• #undef N

26

预定义的宏
• ANSI C标准

• __FILE__, __LINE__, __DATA__, __TIME__, __STDC__, etc.

• 部分扩展的宏
• __FUNCTION__
• __COUNTER__

27

带参宏定义 v.s. 函数调用
• 调用发生时间

• 参数类型检查
• #define MALLOC(n, type) ((type*) malloc((n) * sizeof(type)))

• 参数空间分配

• 执行速度

• 代码长度

28

带参宏定义 v.s. 函数调用

29

P[S\]^4CM=>_^`abcd

一个极端不可读的例子
• IOCCC'11 best self documenting program

• 不可读 = 不可维护

30

puts(usage: calculator 11/26+222/31
+~~~~~~~~~~~~~~~~~~~~~~~~calculator-\
! 7.584,367)
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
! clear ! 0 ||l -x l tan I (/) |
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
! 1 | 2 | 3 ||l 1/x l cos I (*) |
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
! 4 | 5 | 6 ||l exp l sqrt I (+) |
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+
! 7 | 8 | 9 ||l sin l log I (-) |
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(0)

https://www.ioccc.org/2011/hou/hou.c

一个极端不可读的例子
• IOCCC'11 best self documenting program

• 不可读 = 不可维护

31

#define clear 1;
if(c>=11){c=0;sscanf(_,"%lf%c",&r,&c);while(*++_-

c);}\ else if(argc>=4&&!main(4-
(*_++=='('),argv))_++;g:c+=
#define puts(d,e) return 0;}{double a;int b;char

c=(argc<4?d)&15;\ b=(*_%__LINE__+7)%9*(3*e>>c&1);c+=
#define I(d)
(r);if(argc<4&&*#d==*_){a=r;r=usage?r*a:r+a;goto

g;}c=c
#define return if(argc==2)printf("%f\n",r);return
argc>=4+ #define usage main(4-__LINE__/26,argv)
#define calculator *_*(int)
#define l (r);r=--b?r:
#define _ argv[1]

https://www.ioccc.org/2011/hou/hou.c

32

条件编译

33

#if constant-expression
statements

#elif constant-expression
statements

#else
statements

#endif

常见practice
• 条件编译与宏的结合

• 避免跨平台或跨模式的多版本重复工作
• defined运算符：用于判断是否是定义过的宏

34

#if defined(DEBUG)
……

#endif

#ifdef (DEBUG)
……

#endif

#if __STDC__
#ifdef(WIN32)
#ifdef(MAC_OS)
#ifdef(LINUX)

三种典型预处理指令
• 文件包含

• #include

• 宏定义
• #define

• 条件编译
• #if, #ifdef, ifndef, #elif, #else, #endif

35

#include <stdio.h>

int main(void){

return 0;
}

Program Structure

36

组织多文件程序

37

max.c

max.h

main.c

gcc –c main.c max.c –o main

编写大型程序
• 把程序划分成多个文件

• 头文件
• 一般包括宏定义，变量声明，函
数原型

• 惯例扩展名为.h
• 全局变量：static, extern的区别

• 源文件
• 每个源文件包含程序的部分内容，
主要是函数定义和变量定义

• 某个源文件必须包含名为main的
函数，作为程序的起始点

38

标准头文件结构

39

#ifndef XX
#define XX

#endif
#pragma once也能起到类似作用，
但是不是所有编译器都支持

构建多文件程序-Makefile

40

main

foo.o main.o

foo.c foo.h main.c

CMake

41

Make

cmake

.c, .h

CMakeList.txt

Makefile

https://cmake.org/cmake/help/latest/

更多bonus思考
• 这也是为什么不在头文件里定义函数的原因

• 两个 translation unit 同时引用，就导致 multiple definition

• 为什么C++可以实现函数重名（重载限制），而C不允许？
• Name mangling

• _Z4funcid

42

I/O stream

标准流和重定向
• <stdio.h>提供了3个标准流

44

efgh i jkl>

PK/23 ���� ��

PK/��K ���� ��

PK/0OO ��w� ��

文件操作
• 打开文本文件的标准代码

45

int main(){
FILE *fp = fopen ("file", "r");
if(fp){

fscanf(fp, …);
fclose(fp);

}else {
……

}
}

mnef

opef

efqrstuvwVxxy

mnz{

文本文件的模式字符串

字符串 含义
“r” !"#$%&'

“w” !"#$%&()#$*+,-./

“wx” 01#$%&()#$*234-./

“w+x” 01#$%&56)#$*234-./

“a” !"#$%&78)#$*+,-./

“r+” !"#$%&'9(:;#$<"=>

“w+” !"#$%&'9()?@#$-.ABC/

“a+” !"#$%&'9()?@#$-.A78/

46

（p. 427）

文本文件输入输出函数家族

47

家族名 目的 可用于所有的流 只用于stdin和stdout
getchar DEFG 1J0KLEJ0KL J0KLMNO

putchar DEFH 1��KLE4��KL ��KLMNO

gets #IJFG 1J0KP J0KP

puts #IJFH 1��KP ��KP

scanf KLMFG 1PLN31 PLN31

printf KLMFH 1�O23K1 �O23K1

|}~w�

��{�
�~w�

�{�
�~w�

二进制文本的模式字符串

48

字符串 含义
“rb” !"#$%&'

“wb” !"#$%&()#$*+,-./

“wbx” 01#$%&()#$*234-./

“w+bx”或“wb+x” 01#$%&56)#$*234-./

“ab” !"#$%&78)#$*+,-./

“r+b”或“rb+” !"#$%&'9(:;#$<"=>

“w+b”或“wb+” !"#$%&'9()?@#$-.ABC/

“a+b”或“ab+” !"#$%&'9()?@#$-.A78/

（p. 427）

家族名 目的
fwrite NOPFH

fread NOPFG

输入输出函数（们）
• …scanf

• int fscanf(FILE *__stream, const char *__format, ...)
• int scanf(const char *__format, ...)
• int sscanf(const char *__source, const char *__format, ...)
• ……

• …printf
• int fprintf (FILE *__stream, const char *__format, ...)
• int printf (const char *__format, ...)
• int sprintf (char *__stream, const char *__format, ...)
• ……

49

更多：文件的刷新和随机读写
• fflush(FILE *stream);

• fseek(FILE *stream, long offset, int from);

• void rewind(FILE *stream);
• int fgetpos(FILE *stream, fpos_t *position)
• int fsetpos(FILE *stream, fpos_t const *position);

50

End
• 为努力（煎熬）的自己鼓掌！

• 本学期授课结束（下节课为复习答疑课）

• Bonus教学
• 本节课内容不在教学计划内

51

