
Linked List, and Recursion
!"#

why@nju.edu.cn

!"#$ %&'()*+,()$-



struct自引用
• 不同自引用的例子（分别合法么？）

• 什么含义？

2

struct SELF{
int a;
struct SELF b;
float c;

};

struct SELF{
int a;
struct SELF *b;
float c;

};

typedef struct {
int a;
SELF *b;
float c;

} SELF;

typedef struct SELF_TAG {
int a;
struct SELF_TAG *b;
float c;

} SELF;



Linked List

3



Linked List
• 链表：内存非连续的线性结构

• 链表节点
• 存储有价值的数据
• 指向下一个链表节点的指针

• struct node {int data; struct node *next;};

4

data data



链表的节点插入和删除
• 新链表节点的插入

• 已有链表节点的删除

5

data data

data

data data data



单向链表和双向链表
• 单向链表

• struct node {int data; struct node *next;};

• 双向链表
• struct node {

struct node * prev; 
int data; 
struct node *next;

};

6

data data NULL

data data NULLNULL



循环链表
• 与单向链表相比，区别在于

• 尾节点的指针成员不再指向NULL，而是指向首节点

7

data datadata



约瑟夫问题
• 由来

• 在罗马人占领乔塔帕特后，39 个犹太人与Josephus 及他的朋友躲到一个
洞中，39个犹太人决定宁愿死也不要被敌人抓到，于是决定了一个自杀
方式。41个人排成一个圆圈，由第1个人开始报数，每报数到第3人该人
就必须自杀，然后再由下一个重新报数，直到所有人都自杀身亡为止。
Josephus要他的朋友先假装遵从，他将朋友与自己安排在第16个与第31个
位置，于是逃过了这场死亡游戏。

8



约瑟夫问题
• 用数组实现约瑟夫环？

• 试试用循环链表来实现约瑟夫环？
• Joseph.c

9

http://why.ink:8080/static/code/CPL2022/11/joseph.c


Recursion

10



特殊的函数：递归Recursion
• 一个调用本身的函数

• A function that calls (调用) itself.

• 重点是如何能够递归的思考问题

11

It’s a loooooooooong way to go to master recusion!



Mathematical induction
• 数学归纳法

• Base Case (基础情况)：n = 0
• Inductive Step (归纳步骤)：n = k à n = k+1

• 递归函数：自己调用自己的函数
• 不能变：函数名称，功能，返回类型
• 唯一能变的部分：参数

• 通过参数控制问题的解决规模

• 何时结束？

12



递归函数的堆栈管理
• Visualization of Function Calls @ C Tutor

13

https://pythontutor.com/c.html


求阶乘
• F(n) = n!

• 循环 v.s. 递归

14

𝑛! = $ 1
𝑛 ∗ 𝑛 − 1 !

(𝑛 = 0, 1)
(𝑛 > 1)



斐布拉契数列
• 典型递归函数例子

• fib.c

• 黄金分割数列：0,1,1,2,3,5,8,13,21,34,55,89,144,…
• 𝐹 0 = 0, 𝐹 1 = 1, 𝐹 𝑛 = 𝐹 𝑛 − 1 + 𝐹(𝑛 − 2)

15

http://www.why.ink:8080/static/code/CPL2022/06/fib.c


斐布拉契字符串
• f (0) = b, f (1) = a,
• f (2) = f (1) + f (0) = ab,
• f (3) = f (2) + f (1) = aba,
• f (4) = f (3) + f (2) = abaab,
• f(n) = ?

• fib.c
• fib_string.c
• fib_long_iter.c
• fib_long_iter_space.c

16

http://www.why.ink:8080/static/code/CPL2022/06/fib.c
http://www.why.ink:8080/static/code/CPL2022/06/fib_string.c
http://www.why.ink:8080/static/code/CPL2022/06/fib_long_iter.c
http://www.why.ink:8080/static/code/CPL2022/06/fib_long_iter_space.c


17



18



Greatest Common Divisor
• gcd.c

19

gcd a, b = gcd(b, a%b)

http://www.why.ink:8080/static/code/CPL2022/06/gcd.c


数组与递归
• 数组求和

• sum_array.c

• 求最小值
• min_re.c

20

http://www.why.ink:8080/static/code/CPL2022/06/sum_array.c
http://www.why.ink:8080/static/code/CPL2022/06/min_re.c


21



End
• 为努力（煎熬）的自己鼓掌！

• 继续加油！

22


