
How Effective is Branch-based Combinatorial
Testing? An Exploratory Study

Huiyan Wang, Chang Xu∗, Jun Sui, Jian Lu
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

Department of Computer Science and Technology, Nanjing University, Nanjing, China

cocowhy1013@gmail.com, changxu@nju.edu.cn, smilent_sj@163.com, lj@nju.edu.cn

Abstract—Combinatorial testing detects faults by trying dif-
ferent value combinations for program inputs. Traditional com-
binatorial testing treats programs as black box and focuses on
manipulating program inputs (named input-based combinatorial
testing or ICT). In this paper, we explore the possibility of
conducting combinatorial testing via white-box branch informa-
tion. Similarly, different combinations of branches taken in an
execution are tried to test whether they help detect faults and to
what extent. We name this technique branch-based combinatorial
testing (BCT). We propose ways to address challenges in real-
izing BCT, and evaluate BCT with Java programs. The results
reported that BCT can effectively detect faults even with low-
level combinations, say 3-4 ways, which suggest it to be a strong
test adequacy criterion. We also found that our greedy strategy
for minimizing test suites reduces over 50% tests for reaching
certain way levels, and merging nested branches detects faults
more cost-effectively than considering them separately.
Index Terms—Combinatorial testing, testing adequacy criteria

I. INTRODUCTION

Software has become increasingly important in our daily

life, and many different kinds of testing techniques have been

proposed to assure its quality. One popular testing technique

is combinatorial testing, which has been studied for two

decades [39]. Combinatorial testing uses value combinations
for program inputs to detect the failures triggered by certain

input parameter interactions. When a program under test has

multiple input parameters and each parameter has multiple

possible values, it can be cost-effective for detecting most

faults by trying only limited selected value combinations for

input parameters. In combinatorial testing, k-way testing de-
notes that every possible value combination of any k program
input parameters has been tested at least once [41]. It was

reported that 5- or 6-way testing has been very effective as it

can detect most faults [30].

However, combinatorial testing only focuses on input pa-

rameters of a program but pays little attention to the program’s

internal structure (i.e., black box). Therefore, it can fail to

test certain paths of the program, whose conditions can hardly

be satisfied. As such, we explore in this paper the feasibility

of conducting combinatorial testing via white-box branch

information (e.g., which branches of the program under test are

taken in the execution of a test input). To do so, we propose a

novel branch-based combinatorial testing technique (or BCT),

*Corresponding author

and analyze its effectiveness. For ease of presentation, we

name the traditional input-based combinatorial testing ICT.
In software testing, if a certain test input causes a program

under test to fail against its test oracle, we say that this

program contains a bug. A program can contain multiple input

parameters. ICT would try different combinations of values

for these input parameters to exercise the program to check

whether it contains any bug. A notion of k-way testing, from
ICT, refers to the practice of trying every possible combination

of values for any k input parameters at least once in testing a
program. BCT works similarly to ICT except that it replaces

the use of input parameters by that of branches taken in test

executions. As such, we need to map branch-taking conditions

(i.e., which branches are taken in testing) in BCT to input-

value conditions (i.e., which values are taken in testing) in

ICT. However, how this mapping can be done is unclear.

Besides, it is also unclear how branch-taking conditions can

be enumerated since branches taken in test executions, which

are beyond control in BCT, are different from values of input

parameters, which can be easily controlled in ICT.

ICT assumes that all possible values of input parameters

for a program under test are known in advance, and thus

ICT can enumerate their combinations and easily control

input-value conditions. For example, a program has two input

parameters, which can both take a value from {1, 2, 3}. Then,

ICT can enumerate totally nine input-value conditions (3×3).
The counterpart, branch-taking conditions, in BCT means

combinations of branches taken in a program’s execution.

For example, a program has two branch statements, one of

which is if -then-else and the other is if -then. For the former,
there are four cases in program executions, namely, only

then sub-branch executed, only else sub-branch executed, both
executed, and neither executed. Similarly, the latter has two

cases. Then, BCT needs to enumerate totally eight branch-

taking conditions (4×2). To do so, we propose to monitor
and measure branch-taking conditions during testing for BCT

instead of controlling them directly before testing. Besides, we

also propose a greedy strategy to minimize the number of tests

required to achieve the k-way testing goal in BCT. Similarly, k-
way testing in BCT refers to the effort of trying every possible
combination in branch-taking conditions associated with any

k branch statements at least once.
We evaluated BCT on a set of Java programs. Our ex-

periments show that achieving 3- or 4-way testing in BCT

2016 IEEE International Conference on Software Quality, Reliability and Security

978-1-5090-4127-5/16 $31.00 © 2016 IEEE

DOI 10.1109/QRS.2016.15

41

can already bring satisfactory effectiveness, e.g., over 80%

fault detection rate. We observed that the greedy strategy

can reduce over 50% tests under 3- or 4-way setting, thus

saving huge test execution overhead. We also observed that

merging nested branches (i.e., treating a branch statement and

its nested ones as a whole) in a program can detect more

faults under the same k-way setting than considering them
separately (i.e., treating them as different branch statements).

For example, under the same 2-way setting, the former can

detect 3% more faults than the latter on average. Moreover,

when BCT achieves comparable fault detection rates to ICT,

it requires much fewer tests (up to 90% reduction). This trend

is consistent and becomes more obvious with the growth of k
in k-way testing. Besides, BCT can also achieve higher fault
detection rates than existing techniques guided by statement

coverage (15−60%) or branch coverage (5−15%) under the
3- or 4-way setting.

In summary, we make the following contributions in this

paper:

• We propose the idea of conducting combinatorial testing

based on white-box branch information and realize it as

a novel technique BCT.

• We take a greedy strategy in BCT to minimize the number

of tests required for achieving certain k-way testing.
• We evaluate our BCT experimentally with Java programs.

The rest of this paper is organized as follows. Section II

overviews ICT and discusses the differences between ICT

and BCT using an illustrative example. Section III presents

necessary terminologies and elaborates on our BCT framework

and its realization. Section IV evaluates BCT’s effectiveness

in software testing. Section V reviews related work in recent

years, and finally Section VI concludes this paper.

II. OVERVIEW

In this section, we briefly introduce the traditional input-

based combinatorial testing and compare it with our proposed

branch-based combinatorial testing.

A. Input-based Combinatorial Testing

Input-based combinatorial testing was first introduced into
software testing in 1985 by Mandl [39] to test Ada compilers.

ICT tries different combinations of values for input parameters

to exercise a program under test to detect faults.

In ICT, k-way testing refers to the practice of trying every
possible combination of values for any k input parameters at
least once in testing a program. Among them, 2-way testing,

also called pairwise testing, has been widely used due to its
high cost-effectiveness [3].

There are various popular strategies to help generate test

inputs for ICT, such as greedy [8], [32], [42], [45], [53] and

heuristic strategies [15], [24]. There are also other studies

focusing on how to prioritize tests to achieve a k-way testing
goal in ICT [3].

B. Differences between ICT and BCT

In this sub-section, we discuss the differences between BCT

and ICT using an illustrative example.

Take the simple function foo in Fig. 1 as a motivating

example, which triggers a java.lang.ArithmeticEx-
ception exception when flag at Line 12 is equal to zero.
There are three if -then statements in total in foo, and each
of them contains two possible cases in program executions,

namely, then sub-branch ever executed, and then sub-branch
never executed. We use br1, br2 and br3 as in Fig. 1 to
name these branch statements for ease of presentation. In order

to enumerate the two cases for each branch, we use 1 to

represent then sub-branch ever executed, and 0 to represent
then sub-branch never executed. All possible values of input
parameters for test inputs and corresponding values br1, br2
and br3 of branch-taking conditions for branches br1, br2
and br3 in executions are listed in Table I.

To explain the differences between ICT and BCT, we

conducted 2-way testing on foo by applying both ICT and
BCT in turn. In ICT, 2-way testing means to try every

combination of values for any two input parameters in foo,
or in other words, trying every combination in input-value

conditions associated with any two input parameters. For

example, suppose that for any two input parameters among

all of the three, e.g., type and x, there are totally six input-
value conditions (3×2) for testing, and each represents one
combination of values for these two parameters.

On the other hand, 2-way testing in BCT means to try

every combination in branch-taking conditions associated with

any two branch statements. For example, for any two branch

statements in foo, e.g., br1 and br2, there are four branch-
taking conditions (2×2) associated with them, and each repre-
sents a combination for testing. If a test input includes certain

combinations of values for input parameters or its execution

can test certain combinations in branch-taking conditions, we

say that these combinations are covered by this test input.

enum Type { L, M, R }
int foo(Type type, boolean x, boolean y){

int flag = 1;
int result = 0;
if (type == Type.M) { // br1

result = -- flag;
}
if (x != y && type != Type.R) { // br2

result = (++ flag) * 2;
}
if (y == z) { // br3

result = 1 / flag;
}
return result;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Fig. 1: Motivating example: a function foo

42

TABLE I: 12 tests for foo

Test type x y br1 br2 br3

test1 Type.L false false 0 0 0
test2 Type.L false true 0 1 1
test3 Type.L true false 0 1 0
test4 Type.L true true 0 0 1
test5 Type.M false false 1 0 0
test6 Type.M false true 1 1 1
test7 Type.M true false 1 1 0
test8 Type.M true true 1 0 1
test9 Type.R false false 0 0 0
test10 Type.R false true 0 0 1
test11 Type.R true false 0 0 0
test12 Type.R true true 0 0 1

To reduce the number of tests for achieving a k-way testing
goal in testing foo, we can use a greedy strategy to select a
subset of tests from all the tests given in Table I. Each time we

select a test that covers the most uncovered combinations (i.e.,
combinations that have not been covered by selected tests so

far). The selection continues until the selected subset of tests

can already cover all combinations required for achieving a

k-way testing goal. It works similarly for both ICT and BCT.
For ICT, one acceptable test suite generated by the greedy

strategy to achieve 2-way testing can be TICT = {test1, test4,

test6, test7, test9, test12}. TICT covers all combinations of

values for any two input parameters in foo, thus achieving
the 2-way testing goal for ICT. Since ICT pays no attention

to the internal structure of foo, TICT can only make efforts

to try every combination of values for input parameters, and

cannot trigger the java.lang.ArithmeticException
exception since flag at Line12 cannot be zero as tested by
TICT .

On the other hand, BCT considers the internal structure of

foo and focuses on its branch-taking information (i.e., which
cases of branch statements are taken in certain executions), as

illustrated by values of br1, br2 and br3 in Table I. Then,
using our greedy strategy to select tests to achieve the 2-

way testing goal for BCT, we can generate another test suite

TBCT = {test1, test2, test7, test8}. TBCT can trigger the

java.lang.ArithmeticException exception at Line

12, because TBCT can exercise Line 6 and Line 12 in turn

and this leads flag to be zero at Line 12 in the execution of
test8.

III. BRANCH-BASED COMBINATORIAL TESTING

In this section, we present some terminologies first. Then,

we propose our BCT framework and discuss its realization in

practice.

A. Terminologies

Suppose that a program under test contains n branch state-
ments. We define several concepts below:

Definition 1 (Branch Range): A branch statement contains
one or more sub-branches or clauses, which can have many

possible cases in its execution. We denote these different cases

by different integers. The branch range of a branch statement

is a set of such integers. We use Bi (i = 1, 2,..., n) to denote

the branch range of the i-th branch statement in the execution
of a program and denote these different cases by successive

integers starting from zero.

For example, four cases of if -then-else branch statements
in executions, namely, neither executed, only then sub-branch
executed, only else sub-branch executed, and both executed,
are denoted by 0, 1, 2 and 3 in order. Our earlier example

function foo happens to contain no loop and have three

branches with then sub-branch only, br1, br2 and br3. This
makes Bi (i = 1, 2, 3) can only take one value from {0, 1}.

Then, for any i-th branch statement in foo, it has two different
possible cases in the program’s executions, and thus its branch

range is Bi = {0, 1} (i = 1, 2, 3).
Definition 2 (Branch-taking condition): A branch-taking

condition associated with k certain branch statements repre-
sents a possible combination of values for branch ranges of

these k branch statements.
For example, the branch range for br1 in the motivating

example foo is {1, 0}, and so is br2. Therefore, there are four
branch-taking conditions associated with these two branches

(2×2), i.e., {br1 = 1 && br2 = 1}, {br1 = 1 && br2 = 0},
{br1 = 0 && br2 = 1} and {br1 = 0 && br2 = 0}. Each of
them represents a certain combination of values for associated

branch ranges.

Definition 3 (k-way testing in BCT): If every combination
in branch-taking conditions associated with any k branch
statements in a program has been tested at least once, we

say that k-way testing in BCT has been achieved, and name
the corresponding test suite a k-way test suite in BCT.
For example, testing with the test suite TBCT can cover

every combination in branch-taking conditions associated with

any two branches in foo, so TBCT is a 2-way test suite and

testing with TBCT achieves the 2-way testing goal.

Besides, we also define input-value condition and k-way
testing in ICT for ease of presentation.

Definition 4 (Input-value condition): An input-value con-
dition associated with any k input parameters represents a
possible combination of values for any k input parameters in
a program.

For example, there are six input-value conditions (3×2)
associated with input parameters Type and x in foo, i.e.,
{type = Type.L && x = true}, {type = Type.L &&
x = false}, {type = Type.M && x = true}, {type
= Type.M && x = false}, {type = Type.R && x =
true} and {type = Type.R && x = false}.

Definition 5 (k-way testing in ICT): If every combination in
input-value conditions associated with any k input parameters
in a program has been tested at least once, we say that k-way
testing in ICT has been achieved, and name the corresponding

test suite a k-way test suite in ICT.
For example, testing with the test suite TICT can cover

every combination in input-value conditions associated with

any two input parameters in foo, so TBCT is a 2-way test

suite and testing with TBCT achieves the 2-way testing goal.

43

B. BCT Framework
Our BCT conducts combinatorial testing based on white-

box branch information. Different from ICT, which uses value

combinations for program inputs to detect faults triggered

by certain input parameter interactions, BCT tries to detect

faults that are tough to be detected because of their complex

triggering conditions that are difficult to satisfy. So, BCT uses

combinations in branch-taking conditions instead for help.
As we mentioned earlier in Section I, there are two chal-

lenges in conducting BCT. The first is how to map BCT

to ICT at a conceptual level. To address the first challenge,

we define branch-taking conditions in BCT and input-value

conditions in ICT to bridge them by mapping. The second

challenge is how to enumerate branch-taking conditions since

the actual branches taken in executions are beyond control. An

execution path is determined by a program under test itself

and its corresponding test input. It can hardly be controlled

before actual execution. To address the second challenge,

we propose to monitor and measure branch-taking conditions

during testing. We will explain the details of addressing these

challenges in the following.
We present our BCT framework in Fig. 2. This framework

consists of three steps: extracting branch-taking information

from test executions, pruning redundant branch-taking infor-

mation, and selecting tests greedily. For ease of controlling

branch-taking conditions, we select tests (i.e., a subset of tests)
from all tests we generated in advance (i.e., a universal set
of tests) instead of generating tests during testing directly.
With the goal of k-way testing, BCT applies these steps and
eventually check whether faults can be detected by selected

tests. Details of each step is as follows:
1) Extracting branch-taking information: This step extracts

branch-taking information from test executions.
BCT assumes to obtain tests for programs in advance. Under

this assumption, we extract branch-taking information from

all executions of these obtained tests. For branch statements

such as if, switch and try-catch, we extract information about
which cases have been taken in executions of these tests. For

loop statements such as while, do-while and for, we extract
information about whether statements inside a loop have been

executed.
During extracting branch-taking information from test exe-

cutions, we obtain all executed cases for each branch statement

and consider them as all optional cases for each branch. Then

we can obtain the branch range for each branch by mapping

each case to a unique integer, as illustrated in our earlier

foo example in Section II. After that, it is straightforward

to enumerate branch-taking conditions according to Definition

2.
For example, in order to achieve the 2-way testing goal for

foo in Fig. 1, we generate branch-taking conditions associated
with any two branches, i.e., three (C2

3) different choices for

two branches. However, directly combining the values for

branch ranges of different branches (i.e., making up theoretical

branch-taking conditions according to Definition 2) may bring

infeasible combinations (i.e., combinations that cannot be

Step3: Selecting tests greedily for BCT

Table of branch-taking information
Goal:

k-way testing

Universal set

Subset
Fault detected?

Step1: Extracting branch-taking information

Test inputs

…
test1 ? ? ? ?
test2 ? ? ? ?
…

Executions

SUT

Step2: Pruning redundant information

Test inputs
Executions

…
test1 ? ? ? ?
test3 ? ? ? ?
…

…
test1 ? ? ? ?
test3 ? ? ? ?
…

Fig. 2: The BCT framework

covered by any test input). Consider br1 and br2 in the foo
example. Theoretical branch-taking conditions associated with

them contain four combinations (2×2), since branch ranges of
br1 and br2 are both {0, 1}. Those combinations can be all
covered by TBCT . However, if we change the condition type
== Type.M at Line 5 to type == Type.R, corresponding
combinations would include infeasible ones, e.g., {br1 = 1
&& br2 = 1}. This is because for the modified foo, the
condition type == Type.R at Line5 is opposite to the

internal condition type != Type.R at Line 8. Therefore

Line 6 and Line 9 cannot be exercised at the same time by

any test. This makes {br1 = 1 && br2 = 1} an infeasible
combination. However, it is impossible to decide whether

certain combinations in theoretical branch-taking conditions

contain any one that is infeasible in advance. So, instead of

using theoretical branch-taking conditions, we choose to focus

on practical branch-taking conditions (i.e., only considering

existing combinations in the executions of generated tests).

This step maps BCT to ICT at a conceptual level, thus

addressing the first challenge in BCT.

2) Pruning redundant information: This step prunes redun-
dant branch-taking information extracted in the first step.

Branch-taking information is the only criterion to distin-

guish test inputs in BCT. When two test inputs share the same

branch-taking information in their executions, we treat them

as the same with respect to achieving a certain k-way testing
goal. So we prune such redundant branch-taking information

in this step.

For example, when analyzing the function foo in Fig. 1,
we prune redundant test inputs such as test9, test10, test11

and test12, since they are the same as at least another test

in branch-taking information. For example, we consider test1

and test9 as the same, because both of their branch-taking

information are {br1 = 0 && br2 = 0 && br2 = 0}, thus
pruning test9. This is for obtaining a universal set of tests,

which has no repeated branch-taking information.

3) Greedily selecting tests: This step selects tests greedily
to achieve a required k-way testing for BCT.

44

In this step, we use monitoring and measuring to address the

second challenge. Since branch-taking conditions are beyond

control, it is difficult to determine them before actual exe-

cutions. So, we do not manipulate them directly. Instead, we

use branch-taking information extracted from Step1, and select

tests from the universal set of tests with the goal of achieving

k-way testing in BCT. Then, we monitor the whole select-
ing process and measure the corresponding coverage for the

selected tests. In this way, we skip controlling branch-taking

conditions directly, but instead measure coverage information

to achieve different k-way testing goals.
We also use a greedy strategy to minimize the number

of tests required to achieve a certain k-way testing goal in
BCT by Algorithm 1. Each time we select a test that contains

the most uncovered combinations in corresponding branch-

taking conditions from a universal set of tests (Lines 6-10).

This procedure is repeated until all combinations are covered.

During the selection, we ignore those combinations that have

already been covered and ensure that each test we select brings

at least one new combination. In this way, we control and

measure branch-taking conditions with the goal of achieving

a required k-way testing.
We present our greedy strategy used in Algorithm 1 and

elaborate on function calculatedUncoverCom in Algorithm

2. In order to select a test that covers the most uncovered

combinations for achieving the k-way testing goal, we list all
combinations in branch-taking conditions associated with any

k branches among all the n branches (Ck
n different choices) in a

program and calculate the number of uncovered combinations

for each remaining test. The variable score at Line 3 indicates

a test’s ability to cover remaining uncovered combinations (the

larger, the better).

We adopt some optimizations so that we do not have to

calculate Ck
n times in each selection. For example, when all

tests behave the same for some branch statements in their

executions, we would ignore such branch statements since they

do not contribute to our greedy strategy. Suppose that there

Algorithm 1: Greedy strategy
1 Let T be the set of test inputs prepared for P ;
2 Let U be the set of all the combinations in branch-taking
conditions of T ;

3 Let branchTable be the table of branch-taking
information of all tests;

4 Let k and N be required k in k-way testing goal and
branch sum of P ;

5 while U �= ∅ do
6 comForAllTests←
calculateUncoverCom(branchTable, T, k,N, U);

7 t← returnMaxTest(comForAllTests);
8 C ← returnCombinations(t, branchTable);
9 Remove t from T ;
10 Remove C from U ;
11 end while;

Algorithm 2: Calculating uncovered combinations
1 Input: branchTable, T , k, N , U
2 Output: comForAllTests
3 int score;
4 for t← selectOneRemainingTest(T) do
5 score← 0;
6 for locs← branchConds(k,N) do
7 locV alue← getV alue(locs, branchTable, t);
8 if hasnotChosenBefore(locV alue, U)
9 then
10 score← score+ 1;
11 else
12 continue;
13 end if
14 end for
15 add(comForAllTests, score);
16 end for
17 return comForAllTests;

are x such branches. In this way, we only need to analyze
Ck

n−x different choices of k branch statements in enumerating
all branch-taking conditions. The complexity is reduced ex-

ponentially with respect to the decrease of branch statements

considered. Moreover, there are some other heuristic strategies

such as [9], which may bring some more optimizations. As an

exploratory study, we only realize the basic, yet widely used,

the greedy strategy. We may try to implement other heuristic

ones in the future.

C. Realization

We plan to exploratively study the effectiveness and effi-

ciency of our proposed BCT technique, and we realize the

following parts for its practical runs:

1) Generating the universal set of test inputs: Given a
program under test, we need to prepare tests due to the BCT’s

assumption. For convenience, we use Random Testing (RT) to
generate tests. Other test generation strategies also work here.

2) Generating faulty programs: Mutation Testing is a fault-
based testing technique, which has been studied for more

than three decades [24], [27]. We adopt a publicly available

tool named MuJava [38], which supports the whole mutation

testing process, including generating faulty versions (i.e., mu-
tants), executing tests against mutants, and calculating mutant
scores. In our realization, we use its built-in mutation operators

to generate the set of mutants for the program under test and

use mutation scores to measure the fault detection ability for

each selected test.

We apply First Order Mutants (FOMs) [24] instead of

Higher Order Mutants (HOMs), since HOMs can usually be

constructed from a sequence of FOMs.

3) Instrumentation: Instrumentation is one popular tech-
nique to monitor executions of programs, and can be used for

us to collect actual branch-taking information at runtime. We

instrument faulty versions generated by MuJava and execute

45

generated test inputs against the instrumented versions. Then,

during test executions, we can extract branch-taking infor-

mation from test executions. We define BCT at the source

level, so we conduct static source code instrumentation. Byte

code instrumentation will also work with the help of the

mapping process between source code and byte code versions

of programs.

4) Evaluating BCT: We compose everything together and
realize our BCT framework to achieve a required k-way testing
goal. If the goal is achieved, we check whether the seeded

fault of each mutant can be detected by the selected tests for

achieving this goal. We use mutation score to measure a test

suite’s ability to detect faults when achieving k-way testing,
since mutation score has been widely adopted as a proxy of

detection ability [27].

IV. EVALUATION

In this section, we evaluate BCT’s effectiveness experimen-

tally, and present our observations.

A. Research Questions

In order to comprehensively evaluate BCT, we raise four

research questions in terms of effectiveness and efficiency.

RQ1: Is BCT effective and how does its ability to detect
faults change with different k-way settings?

By answering this research question, we try to find some

properties of BCT and evaluate its effectiveness. In ICT and

BCT, k-way testing refers to the practice of trying every
possible combination in input-value conditions associated with

any k input parameters (ICT) or branch-taking conditions
associated with any k branches (BCT) at least once in testing
a program. ICT can detect most faults by 5- or 6-way testing

[30]. We investigate whether BCT has a similar property (e.g.,

how many faults can BCT detect by different k-way settings).

RQ2: Using a greedy strategy, how much overhead can it
save?

In the framework as we introduced in Section III, we apply

a greedy strategy in our test selection, which is used to

minimize the number of tests. The greedy strategy helps reduce

the number of tests, thus reducing the execution overhead

in testing. Tests often need to be executed for many times,

especially in regression testing, so it is practically useful to

reduce the number of required tests.

RQ3: Is BCT’s effectiveness related to nested branches in
a program, and how much impact do nested branches have?

Nested branches play an important role in programs, and

may lead to complex restrictions in executing the concerned

branch statements (e.g., a branch must be taken before another

executes). So we try to explore the possible behavior and

compare the impact of merging nested branches as a whole

to that of not doing so.

RQ4: Compared with ICT and other existing techniques
guided by statement or branch coverage, how much does our
BCT improve?

We also compare BCT with existing testing techniques. On

one hand, we compare the effectiveness and the number of

selected tests between BCT and ICT, respectively. On the other

hand, we select existing techniques guided by statement or

branch coverage to compare with our approach, since they are

widely used in practical software testing [57], [17], [43].

B. Experimental Subjects

We selected nine Java programs as our experimental sub-

jects, and all of them can be obtained from open-source

websites like GitHub [16], SIR [50], LeetCode [31]. The

statistics of these subject programs are listed in Table II.

The second column lists a concerned program’s source or

or its brief description. The column “BranchNum” lists the

number of branches at the source and byte code (in brackets)

level for each program. We divide all subject programs into

three groups, namely, Small, Medium and Large, according

to their branch numbers, as shown in column “Group”. We

prepared for the experiments according to our earlier explained

realization part in Section III.

First, we randomly generated test inputs for each subject

program. We generated a total of 1,000 tests for group “Small”,

and 1,200 for group “Medium”. For Jtcas, we used the

tests that come along with this program (1,487), since they

were also generated by a similar random mechanism. For

the programs in group “Large”, we generated 1,500 tests for

ShortestPath and 1,200 tests for ClosestPair.

Then, for each subject program, we used MuJava to generate

mutants, and executed tests on these mutants. After filtering

out invalid mutants (crashed or failed in compilation), we

obtained a total of 3,511 mutants (the fourth column in Table

II). We discarded those mutants that cannot be killed by any
test (i.e., a test can kill a mutant when the output of this

mutant after executing the test is different from the output

of its original program) [24], and conducted experiments on

the remaining 2,489 mutants (the fifth column in Table II).

C. Experimental Setup

We evaluated our technique BCT on the Java programs

listed in Table II. We conducted experiments to answer re-

search questions with respect to the divided different program

groups.

For RQ1, we measure BCT’s effectiveness by mutation

score (as our dependent variable) since it is a proxy of

detection ability as mentioned earlier [27]. We control the

value of k in k-way testing as our independent variable.
For RQ2, we set the number of tests as the dependent

variable, and different selecting strategies (random or greedy)

as the independent variable.

For RQ3, to find whether merging nested branches affects

BCT’s effectiveness, we still measure BCT’s mutation score

(as our dependent variable). Besides, we control the treatment

on nested branches (i.e., considering them as a whole or

separately) as the independent variable.

Finally, for RQ4, to compare BCT with other testing

techniques, we control the selected technique for comparison

46

TABLE II: Statistics of subject programs
Subject name Source/description LOC # Mutants # Killed % Killed TestNum Group BranchNum MergeBranch
PrimeNumber Judge the prime number 17 47 34 72% 1,000 Small 3 (5) 1
LeapYear Judge the leap year 21 61 49 80% 1,000 Small 3 (3) 2
Median Return the median number 22 101 82 81% 1,000 Small 5 (5) 2

DayOfMonth Display day number 40 227 183 81% 1,000 Small 6 (17) 3
Decode LeetCode OJ Problem 78 563 350 62% 1,200 Medium 13 (39) 6

BoyerMoore LeetCode OJ Problem 93 345 259 75% 1,200 Medium 13 (31) 9
Jtcas SIR 169 545 362 66% 1,487 Medium 18 (48) 13

ShortestPath LeetCode OJ Problem 271 653 478 73% 1,500 Large 32 (53) 16
ClosestPair LeetCode OJ Problem 370 969 692 71% 1,200 Large 40 (54) 27
Total - 1,081 3,511 2,489 71% 10,587 - 140 (255) 79

0 5 10 15 20 25 30 35 40 45

0.6

0.7

0.8

0.9

-way testing

M
u
ta
ti
o
n
sc
o
re

PrimeNumber

LeapYear

Median

DayOfMonth

Decode

BoyerMoore

Jtcas

ShortestPair

ClosestPath

Fig. 3: Different fault detection rates when achieving different k-way settings for BCT

(i.e., BCT, ICT or techniques guided by statement or branch

coverage) as the independent variable. We still compare their

testing effectiveness by mutation score (as the dependent

variable). Besides, to compare the cost-effectiveness of BCT

and ICT, we use both mutation score and number of tests as

dependent variables.

D. Experimental Results and Analyses

In the following, we list the four research questions and

answer them in turn. We conducted our experiments on a

Linux Server with 32 cores of Intel Xeon CPU @2.66GHz.

RQ1: Is BCT effective and how does its ability to detect
faults change with different k-way settings?

To answer this question, we measure the mutation score for

BCT under different k-way settings. Fig. 3 shows the results.
We tested all programs. We observe that BCT’s effectiveness in

testing different programs has a similar pattern with the growth

of k in k-way testing: increasing sharply first, then becoming
stable when k reaches a certain value (around three or four).
However, LeapYear behaved differently. Its mutation score for

LeapYear score did not even change when we increased k.
We studied it and found that LeapYear’s program logic is so

simple that its mutation score reached its limit even in the

case of 1-way testing. In general, BCT exhibits satisfactory

effectiveness (over 80% fault detection rate on average) when

we set the value of k to three or four. This result is impressive.

We investigated BCT’s effectiveness and found that
achieving 3- or 4-way testing in BCT can already
bring satisfactory effectiveness (over 80% fault detec-
tion rate).

RQ2: Using a greedy strategy, how much overhead can it
save?
We chose programs in groups “Medium” and “Large” to

conduct experiments to answer this question. After preparing

tests for each program and pruning redundant branch-taking

information, we used both a greedy strategy and a random

strategy in turn to select tests from the universal set. Fig. 4

shows the results. The x-axis represents k-way testing with
different values of k, and y-axis represents the ratio of selected
tests against all tests, averaged on all tested programs. In

Fig. 4, we observed that the greedy strategy can reduce

over half tests for 3- or 4-way testing, which is the level

of inducing satisfactory testing effectiveness as answered in

RQ1. Therefore, our greedy strategy can greatly improve the

efficiency for BCT execution and save its testing overhead.

We evaluated the benefit of our greedy strategy, and
found that it can help reduce over half tests, thus saving
huge execution overhead in testing.

RQ3: Is BCT’s effectiveness related to nested branches in
a program, and how much impact do nested branches have?
Nested branches play an important role in programs, and

may lead to complex restrictions in program executions. In our

experiments, we had different treatments on nested branches

47

2 4 6 8 10
0%

25%

50%

75%

100%

-way testing

P
er
ce
n
ta
g
e
o
f
te
st
s

greedy

random

Fig. 4: Comparison between the greedy and random strategies

in selecting tests when achieving different k-way settings for
BCT

(merge or no-merge). Merge refers to the treatment of con-
sidering a branch statement and its nested branch ones as a

whole, while no-merge refers to the treatment of considering
each branch statement separately, no matter whether it contains

any nested branch statement or not. This would change the

number of branches under consideration in a program, as well

as changing their corresponding branch ranges.

We selected all three programs from group “Medium” and

one program from group “Large” to investigate this question.

Programs in group “Small” are ignored as they typically

contain too few branch statements. We list the number of

original branches (BranchNum) and number of branches after

merging nested ones (MergeBranch) for each program in Table

II.

Fig. 5 to Fig. 8 show the comparison results for different

programs, respectively. They consistently show that the mu-

tation score of BCT with merge is relatively higher than that

of BCT with no-merge within valid k value ranges. Therefore,
applying the merge treatment can help detect more faults than

no-merge under the same k-way setting, e.g., around 3% more

on average under the 2-way setting.

We observed that merging nested branches helps detect
more faults in the same k-way testing, (e.g., 3% more
under the 2-way setting), than considering them sepa-
rately in BCT.

RQ4: Compared with ICT and other existing techniques
guided by statement or branch coverage, how much does our
BCT improve?
We consider two aspects to answer this question. First,

we conducted experiments to compare BCT with ICT. We

chose Jtcas as our subject program because it has 12 input

parameters, which are comparable to its contained branch

statements. Note that it is impossible to try every possible

value for an input parameter when it has infinite or too many

possible values. So, we chose to partition the infinite or a too

large value range for an input parameter into equivalent groups

and use a single sample in each group as its representative. For

Jtcas, whose input parameters are all integers, we partitioned

possible values for each parameter by a modulus operator.

For ICT1, we conducted the modulus operator with 5 against

all possible values and partitioned these values into different

0 2 4 6 8 10 12 14

0.60

0.65

0.70

0.75

-way testing

M
u
ta
ti
o
n
sc
o
re

merge

no-merge

Fig. 5: Comparison between merge and no-merge when achiev-
ing different k-way settings for Decode

0 2 4 6 8 10 12 14

0.75

0.80

0.85

0.90

-way testing
M
u
ta
ti
o
n
sc
o
re

merge

no-merge

Fig. 6: Comparison between merge and no-merge when achiev-
ing different k-way settings for BoyerMoore

0 5 10 15

0.60

0.70

0.80

0.90

-way testing

M
u
ta
ti
o
n
sc
o
re

merge

no-merge

Fig. 7: Comparison between merge and no-merge when achiev-
ing different k-way settings for Jtcas

0 10 20 30 40

0.75

0.80

0.85

-way testing

M
u
ta
ti
o
n
sc
o
re

merge

no-merge

Fig. 8: Comparison between merge and no-merge when achiev-
ing different k-way settings for ShortestPath

48

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

-way testing

M
u
ta
ti
o
n
sc
o
re

BCT

ICT1

ICT2

Fig. 9: Comparison on fault detection rate when achieving

different k-way testing for BCT and ICT

groups according to their remainders from this operation. ICT2

worked similarly but with 10 for the modulus operation. To

conduct a fair comparison with BCT, we used the same set of

universal tests and only partition those tests available in this

set. We conducted experiments until 6-way testing as results

became stable then. Fig. 9 shows the result. We observe that

ICT1 and ICT2 behaved slightly better than BCT when k
is larger enough (≥3). When k is smaller than three, BCT
behaved between ICT1 and ICT2. However, we note that this

seemingly slight advantage of ICT over BCT came at the cost

of much more tests required, as shown in Fig. 10. To achieve

satisfactory testing effectiveness (e.g., with a mutation score

greater than 0.8), ICT1 and ICT2 both require much more

tests than BCT. This trend is consistent and becomes more

obvious with the growth of k in k-way testing. For example,
BCT requires only 56 tests while ICT1 requires over 600 tests

and ICT2 requires over 800 under the same 6-way setting. This

indicates that BCT can save much more execution overhead

compared to ICT, when achieving comparable effectiveness.

Second, we also compared our BCT with existing tech-

niques that are guided by statement or branch coverage in their

fault detection rates. We selected all three programs in group

“Medium” (Decode, BoyerMoore and Jtcas) and one program

in group “Large” (ClosePair) as our subject programs. Fig. 11

shows the results. We used five settings for statement coverage

(60%, 70%, 80%, 90% and 95%) and three settings for k-way
testing for BCT (k = 2, 3, 4). For Decode, we could only
realize a statement coverage up to 92% due to this program’s

own limit. We observe that BCT clearly achieves the highest

fault detection rate for all the four programs. Besides, its 3-

or 4-way testing behaved up to 60% better than techniques

guided by statement coverage and up to 15% better than

techniques guided by branch coverage. This indicates that

our BCT represents a very strong test adequacy criterion for

testing.

We observed that when BCT reaches a comparable
detection rate to ICT (over 80%), it requires much less
tests (up to around 90% reduction). We also observed
a great improvement in BCT’s test effectiveness than
existing techniques guided by statement (15−60%) or
branch coverage(5−15%).

1 2 3 4 5 6

0

200

400

600

800

-way testing

N
u
m
b
er
o
f
te
st
s

BCT

ICT1

ICT2

Fig. 10: Comparison on number of required tests when achiev-

ing different k-way testing for BCT and ICT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Decode BoyerMoore Jtcas ClosestPair
60% StCoverage 70% StCoverage 80% StCoverage

90% StCoverage 95% StCoverage BrCoverage

2-way 3-way 4-way

M
u

ta
ti

o
n

 s
co

re

Fig. 11: Comparison on fault detection rate when achieving

different k-way testing for BCT and techniques guided by

statement or branch coverage

E. Threats to Validity

In our experiments, we empirically explored and evaluated

our BCT’s effectiveness in software testing. One major threat

could be the selected subject programs that may seem not

sufficiently large. We note that none of our experiments

utilized any special feature relating to such “may-not-be-large”

programs. Our experiments tried to alleviate this threat by

controlling different variables and isolating irrelevant factors

in different groups of experiments. Besides, although these

programs themselves are not very large, our experiments are

complex enough, covering extremely lots of combinations

from programs, mutants, branches and ways. Our experiments

were conducted on a powerful server as mentioned earlier.

Nevertheless, even if we already ran experiments using eight

threads, it still took us eight continuous weeks to complete

due to its prohibitively large scale. Still, we acknowledge that

49

our experiments deserve further extensions on larger subject

programs to better validate the results reported in this paper.

F. Discussion

On a technical perspective, we realize BCT as a novel

technique and evaluate it experimentally with real-world Java

programs. It is shown that BCT can be both feasible and

cost-effective. As an exploratory study, our primary goal is

to explore the feasibility of conducting combinatorial testing

based on white-box branch information, rather than propose

BCT as a mature testing technique, which may require a more

complete and detailed evaluation.

On a practical perspective, we believe that BCT can be

easily applied under suitable testing scenarios, e.g., regression

testing minimization, selection and prioritization [19], [59]. On

one hand, our BCT framework of monitoring and measuring

can be directly used in minimizing, selecting or prioritizing

reused tests [59] in regression testing, which are retained and

reused between different versions. Reused tests are used to
exercise the parts of a program that remain unchanged across

different versions. So, it is natural to obtain their coverage

information in executions from a former version, which is

also reusable in its later version [62]. Since regression testing

is performed to make sure that newly introduced functions

of the program do not interfere with the existing ones, it

actually makes it worthy and necessary to exercise unchanged

parts repeatedly with reused tests and it also makes our work

useful on this respect. On the other hand, we also expect that

BCT can be applied in various ways with the help of other

techniques. For example, since symbolic execution proposes

an analysis technique to generate test inputs for certain paths,

we believe that combining BCT with symbolic execution can

help automate generating test inputs for specific paths that are

required by BCT.

As an exploratory study, we present a main framework

of BCT and conduct preliminary experiments to evaluate its

performance. More practical applications, like combining BCT

with symbolic execution, remain for further study because they

require further extensions to BCT. We keep it as our future

work.

V. RELATED WORK

Our work in this paper relates to various existing studies on

ICT, control flow testing criteria, and coverage-guided testing.

In this section, we discuss the most relevant work to our work

in these fields.

A. Input-based Combinatorial Testing

ICT has been studied for over three decades [39] and

has been widely used for addressing practical problems (e.g.,

testing embedded systems). By trying every possible combi-

nation of values for input parameters at least once in testing a

program, ICT shows its cost-effectiveness and has been well-

accepted in software testing. Recently, there is also research

[20] on comparing ICT with other black-box techniques, and

ICT performs quite satisfactorily among them.

Some pieces of work focus on generating test inputs for

ICT [2], [8], [15], [22], [53], and various tools have been

developed such as AETG [8], PICT [10] and CATS [48]. All

these existing tools have their own strengths and weaknesses,

and they can be selected according to different testing require-

ments in practice. On a technical perspective, to date, there

are generally four main groups of techniques or algorithms

proposed: greedy algorithms, heuristic algorithms, mathematic

techniques, and random techniques [41]. Greedy algorithms

have been most widely used to generate test inputs using

ICT in practice due to their simpleness and accuracy, e.g.,

In Parameter Order (IPO) [33], while heuristic algorithms

are applied in order to accelerate the test generation at a

small cost of accuracy, e.g., hill climbing, great flood, tabu

search, simulated annealing [9] and genetic techniques [15].

In addition, mathematic techniques are often used in the

mathematic community, and random techniques are often used

as a benchmark technique to analyze effectiveness of other

techniques. Some other researchers combine different tech-

niques mentioned. For example, mathematic techniques are

combined with simulated annealing in [9] for test generation.

However, when applying ICT to test generation, researchers

may suffer from combinatorial explosion when a program

contains numerous input parameters and each parameter has

numerous optional values. Many pieces of work on ICT

focus on alleviating this problem. The latest one [21] pro-

poses a flexible search-based technique using similarity to

bypass combinatorial explosion. We expect that such work

can enlighten us for further handling the similar combinatorial

explosion problem in BCT.

Except for test input generation, which is the most active

research area for ICT, there are also some pieces of work

on applying ICT to test input prioritization [4], [44], failure

diagnosis [49], [58], metrics and evaluation [55]. Furthermore,

ICT is also useful in various types of practical applications

[12], [28], [29], such as mobile applications [28], satellite

communications [23], and regression testing [44].

B. Control-flow Testing Criteria

There are already some well-known testing criteria, such as

statement coverage, branch coverage, conditional coverage and

path coverage. They can be used as a predication to determine

whether a program has already been tested “enough” [14].

Our BCT seems to be seated between branch coverage and

path coverage. In fact, 1-way testing for BCT is equivalent

to techniques guided by branch coverage, and full-way testing
(i.e., k is equal to the number of all branches in a program)
is equivalent to techniques guided by path coverage.

Besides, there are also some other testing criteria, such as

Modified Condition/Decision Coverage (MC/DC) [13], [54]

and Reinforced Condition/Decision Coverage (RC/DC) [52].

Indeed, MC/DC seems to be one of the most complicated

and controversial control-flow testing criteria and RC/DC is

designed to eliminate some of its shortcomings. We consider

MC/DC as the closest testing criterion to our BCT. However,

MC/DC considers combinations for internal conditions in

50

each branch statement, while BCT considers combinations in

branch-taking conditions and treats each branch statement as

a whole, skipping its internal conditions. Thus, they work at

different levels and may potentially complement to each other.

This deserves further study. Finally, our BCT is customizable

by selecting different k values in testing, and this makes it
flexible for suiting different needs in software testing (e.g.,

from the most light branch coverage to the most heavy path

coverage).

C. Coverage-guided Testing

Generally, BCT uses coverage of combinations in branch-

taking conditions associated to guide the whole testing process.

Many testing techniques [11], [25], [35], [51], [56], [60], [62]

share the similar idea behind and make efforts to guide testing

with the help of extra runtime information, and one of the most

popular ways is to use coverage information, named coverage-
guided techniques.
Coverage-guided techniques have been widely applied to

regression testing [25], [46], [61], [62] since coverage knowl-

edge produced by prior executions of tests from former ver-

sions has already be obtained. Various types of coverage infor-

mation have been investigated. For example, branch coverage

is used to guide test selection in Adaptive Random Testing

(ART) in [7] and it brings great performance improvement

[6], [62]. Apart from regression testing, coverage information

can also be applied to test generation with the help of

test generation techniques like symbolic execution [5], [18],

[47], which has been combined with many different testing

techniques [26], [34] for specific purposes.

Scenarios mentioned above are also suitable for our BCT.

Our proposed technique can not only be directly useful for test

prioritization in regression testing, but it can also be useful

for automated test generation with the help of techniques like

symbolic execution. We also plan to apply BCT to popular

Android testing in the future. However, when analyzing An-

droid apps, some additional problems like Android-specific

event rules [36], [37] and simulations of user-interaction and

sensory data [1], [40] should be also taken into consideration.

VI. CONCLUSION

In this paper, we propose a novel technique named branch-
based combinatorial testing (BCT), which is based on white-
box information. BCT adopts the key insight of combinatorial

testing and uses branch-taking conditions to replace input-

value conditions in ICT. We evaluated BCT on Java programs

and the results show that BCT can achieve satisfactory effec-

tiveness under a 3- or 4-way setting, clearly lighter than ICT.

We also evaluated the greedy strategy for selecting tests, and it

turns out that this strategy can reduce over half of tests under

3- or 4-way testing. Besides, we compared BCT to ICT and

found that BCT requires much less tests (up to 90% reduction)

while it still achieves a comparable fault detection rate to ICT.

We also compared BCT with existing techniques guided by

statement or branch coverage, and the result shows that BCT

consistently outperforms these techniques in test effectiveness.

However, our work still has limitations. For example, it may

take much time to conduct BCT on those subjects that contain

numerous branch statements. We will further investigate and

optimize for BCT’s performance in such cases. Besides, cur-

rently the universal tests are generated randomly, and branch-

taking conditions are monitored, measured and controlled at

runtime. In future, we plan to combine BCT with existing

test generation techniques such as concolic testing or dynamic

symbolic execution, so that BCT can be more effective and

efficient at generating test inputs.

ACKNOWLEDGMENT

This work was supported in part by National Basic Research

973 Program (Grant No. 2015CB352202), and National Nat-

ural Science Foundation (Grant Nos. 61472174, 91318301,

61321491) of China. The authors would also like to thank

the support of the Collaborative Innovation Center of Novel

Software Technology and Industrialization.

REFERENCES

[1] C. Q. Adamsen, G. Mezzetti, and A. Møller, “Systematic execution of
android test suites in adverse conditions,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis. ACM,
2015, pp. 83–93.

[2] A. Barrett and D. Dvorak, “A combinatorial test suite generator for gray-
box testing,” Space Mission Challenges for Information Technology, pp.
387–393, 2009.

[3] R. C. Bryce and C. J. Colbourn, “Prioritized interaction testing for pair-
wise coverage with seeding and constraints,” Information and Software
Technology, vol. 48, no. 10, pp. 960–970, 2006.

[4] R. C. Bryce and A. M. Memon, “Test suite prioritization by interaction
coverage,” in Workshop on Domain specific approaches to software test
automation: in conjunction with the 6th ESEC/FSE joint meeting. ACM,
2007, pp. 1–7.

[5] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Commun. ACM, pp. 82–90, Feb. 2013.

[6] T. Y. Chen, F.-C. Kuo, H. Liu, and W. E. Wong, “Code coverage of
adaptive random testing,” Reliability, IEEE Transactions on, vol. 62,
no. 1, pp. 226–237, 2013.

[7] T. Y. Chen, H. Leung, and I. Mak, “Adaptive random testing,” in
Advances in Computer Science-ASIAN 2004. Higher-Level Decision
Making. Springer, 2004, pp. 320–329.

[8] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, “The aetg
system: an approach to testing based on combinatorial design,” Software
Engineering, IEEE Transactions on, vol. 23, no. 7, pp. 437–444, 1997.

[9] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling, “Augmenting simulated
annealing to build interaction test suites,” in Software Reliability Engi-
neering, 2003. ISSRE 2003. 14th International Symposium on, 2003, pp.
394–405.

[10] J. Czerwonka, “Pairwise testing in the real world: Practical extensions to
test-case scenarios,” in Proceedings of 24th Pacific Northwest Software
Quality Conference, Citeseer, 2006, pp. 419–430.

[11] T. Dang and T. Nahhal, “Coverage-guided test generation for continuous
and hybrid systems,” Formal Methods in System Design, vol. 34, no. 2,
pp. 183–213, 2009.

[12] I. S. Dunietz, W. Ehrlich, B. Szablak, C. L. Mallows, and A. Iamino,
“Applying design of experiments to software testing: experience report,”
in Proceedings of the 19th international conference on Software engi-
neering. ACM, 1997, pp. 205–215.

[13] A. Dupuy and N. Leveson, “An empirical evaluation of the mc/dc
coverage criterion on the hete-2 satellite software,” Digital Avionics
Systems Conference, 2000. Proceedings. DASC, 2000.

[14] P. G. Frankl and E. J. Weyuker, “An applicable family of data flow
testing criteria,” IEEE Transactions on Software Engineering, vol. 14,
no. 10, pp. 1483–1498, Oct. 1988.

[15] S. Ghazi and M. Ahmed, “Pair-wise test coverage using genetic algo-
rithms,” Evolutionary Computation, 2003. CEC’03. The 2003 Congress
on, vol. 2, pp. 1420–1424, 2003.

51

[16] GitHub, http://www.github.com.
[17] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, and

D. Marinov, “Comparing non-adequate test suites using coverage cri-
teria,” in Proceedings of the 2013 International Symposium on Software
Testing and Analysis, 2013, pp. 302–313.

[18] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in PLDI’05, 2005.

[19] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel,
“An empirical study of regression test selection techniques,” ACM Trans-
actions on Software Engineering and Methodology (TOSEM), vol. 10,
no. 2, pp. 184–208, 2001.

[20] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon,
“Comparing white-box and black-box test prioritization,” in Proceedings
of the 38th International Conference on Software Engineering, ser. ICSE
’16, 2016.

[21] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. Le Traon, “Bypassing the combinatorial explosion: Using similarity
to generate and prioritize t-wise test configurations for software product
lines,” Software Engineering, IEEE Transactions on, vol. 40, no. 7, pp.
650–670, 2014.

[22] R. Huang, X. Xie, T. Y. Chen, and Y. Lu, “Adaptive random test
case generation for combinatorial testing,” Computer Software and
Applications Conference (COMPSAC), 2012 IEEE 36th Annual, pp. 52–
61, 2012.

[23] J. Huller, “Reducing time to market with combinatorial design method
testing,” in Proceedings of 10th Annual International Council on Systems
Engineering (INCOSE’00) 2000, July 2000.

[24] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649–678, 2011.

[25] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive random test
case prioritization,” in Automated Software Engineering, 2009. ASE’09.
24th IEEE/ACM International Conference on. IEEE, 2009, pp. 233–
244.

[26] H. Jin, Y. Jiang, N. Liu, C. Xu, X. Ma, and J. Lu, “Concolic metamorphic
debugging,” in IEEE Computer Software and Applications Conference,
2015, pp. 232–241.

[27] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing,” ACM
SIGSOFT Symposium on The Foundation of Software Engineering, pp.
654–665, 2014.

[28] R. Krishnan, S. M. Krishna, and P. S. Nandhan, “Combinatorial testing:
learnings from our experience,” ACM SIGSOFT Software Engineering
Notes, vol. 32, no. 3, pp. 1–8, 2007.

[29] D. R. Kuhn, R. Kacker, and Y. Lei, “Combinatorial and random testing
effectiveness for a grid computer simulator,” NIST Tech. Rpt, vol. 24,
2008.

[30] R. Kuhn, Y. Lei, and R. Kacker, “Practical combinatorial testing: Beyond
pairwise,” It Professional, vol. 10, no. 3, pp. 19–23, 2008.

[31] LeetCode, http://www.leetcode.com.
[32] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “Ipog-ipog-d:

Efficient test generation for multi-way combinatorial testing,” Software
Testing Verification and Reliability, vol. 18, no. 3, pp. 125–148, 2008.

[33] Y. Lei and K.-C. Tai, “In-parameter-order: A test generation strategy for
pairwise testing,” in High-Assurance Systems Engineering Symposium,
1998. Proceedings. Third IEEE International. IEEE, 1998, pp. 254–
261.

[34] J. J. Li, D. Weiss, and H. Yee, “Code-coverage guided prioritized test
generation,” Information and Software Technology, vol. 48, no. 12, pp.
1187–1198, 2006.

[35] X. Li, Y. Jiang, Y. Liu, and C. Xu, “User guided automation for testing
mobile apps,” in Asia-Pacific Software Engineering Conference, 2014,
pp. 27–34.

[36] Y. Liu, C. Xu, S.-C. Cheung, and J. Lu, “Greendroid: automated
diagnosis of energy inefficiency for smartphone applications,” Software
Engineering, IEEE Transactions on, vol. 40, no. 9, pp. 911–940, 2014.

[37] Y. Liu, C. Xu, S.-C. Cheung, and V. Terragni, “Understanding and
detecting wake lock misuses for android applications,” in Proceedings
of the 24th ACM SIGSOFT International Symposium on the Foundations
of Software Engineering (FSE 2016), in press.

[38] Y. S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: A mutation system for
java,” in Proceedings of the 28th International Conference on Software
Engineering, ser. ICSE ’06, 2006, pp. 827–830.

[39] R. Mandl, “Orthogonal latin squares: An application of experiment
design to compiler testing.” Communications of the Acm, vol. 28, no. 10,
pp. 1054–1058, 1985.

[40] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek, “Sig-droid:
Automated system input generation for android applications,” in Soft-
ware Reliability Engineering (ISSRE), 2015 IEEE 26th International
Symposium on. IEEE, 2015, pp. 461–471.

[41] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys (CSUR), vol. 43, no. 2, pp. 33–63, 2011.

[42] C. Nie, B. Xu, Z. Wang, and S. Liang, “Generating optimal test set
for neighbor factors combinatorial testing,” in Quality Software, 2006.
QSIC 2006. Sixth International Conference on, 2006, pp. 259–265.

[43] A. Perez, A. Rui, and A. Riboira, “A dynamic code coverage approach to
maximize fault localization efficiency,” Journal of Systems and Software,
vol. 90, no. 2, pp. 18–28, 2014.

[44] X. Qu, M. B. Cohen, and K. M. Woolf, “Combinatorial interaction
regression testing: A study of test case generation and prioritization,” in
Software Maintenance, 2007. ICSM 2007. IEEE International Confer-
ence on. IEEE, 2007, pp. 255–264.

[45] R. Reussner, J. Mayer, and J. A. Stafford, Quality of Software Architec-
tures and Software Quality. Springer, Berlin, 2009.

[46] D. S. Rosenblum and E. J. Weyuker, “Using coverage information to
predict the cost-effectiveness of regression testing strategies,” Software
Engineering, IEEE Transactions on, vol. 23, no. 3, pp. 146–156, 1997.

[47] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine
for c,” in ESEC/FSE’05. ACM.

[48] G. B. Sherwood, S. S. Martirosyan, and C. J. Colbourn, “Covering arrays
of higher strength from permutation vectors,” Journal of Combinatorial
Designs, vol. 14, no. 3, pp. 202–213, 2006.

[49] L. Shi, C. Nie, and B. Xu, “A software debugging method based on
pairwise testing,” in Computational Science–ICCS 2005. Springer,
2005, pp. 1088–1091.

[50] SIR, http://sir.unl.edu.
[51] S. Tasharofi, M. Pradel, Y. Lin, and R. Johnson, “Bita: Coverage-

guided, automatic testing of actor programs,” in Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on.
IEEE, 2013, pp. 114–124.

[52] S. A. Vilkomir and J. P. Bowen, “From mc/dc to rc/dc: formalization and
analysis of control-flow testing criteria,” Formal Aspects of Computing,
vol. 18, no. 1, pp. 42–62, 2006.

[53] Z. Wang, C. Nie, and B. Xu, “Generating combinatorial test suite
for interaction relationship.” Soqua Fourth International Workshop on
Software Quality Assurance in Conjunction with E, pp. 55–61, 2007.

[54] M. W. Whalen, S. Person, N. Rungta, M. Staats, and D. Grijincu, “A
flexible and non-intrusive approach for computing complex structural
coverage metrics,” in Software Engineering (ICSE), 2015 IEEE/ACM
37th IEEE International Conference on, 2015.

[55] A. W. Williams and R. L. Robert, “A measure for component interac-
tion test coverage,” in Computer Systems and Applications, ACS/IEEE
International Conference on. 2001. IEEE, 2001, pp. 304–311.

[56] T. Xie, N. Tillmann, J. De Halleux, and W. Schulte, “Fitness-guided path
exploration in dynamic symbolic execution,” in Dependable Systems
& Networks, 2009. DSN’09. IEEE/IFIP International Conference on.
IEEE, 2009, pp. 359–368.

[57] M. H. Yao, Xiangjuan and Y. Jia, “A study of equivalent and stubborn
mutation operators using human analysis of equivalence,” in Proceedings
of the 36th International Conference on Software Engineering, 2014, pp.
919–930.

[58] C. Yilmaz, M. B. Cohen, and A. A. Porter, “Covering arrays for effi-
cient fault characterization in complex configuration spaces,” Software
Engineering, IEEE Transactions on, vol. 32, no. 1, pp. 20–34, 2006.

[59] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[60] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: a coverage-
driven testing tool for multithreaded programs,” in Acm Sigplan Notices,
vol. 47, no. 10. ACM, 2012, pp. 485–502.

[61] C. Zhang, Z. Chen, Z. Zhao, S. Yan, J. Zhang, and B. Xu, “An improved
regression test selection technique by clustering execution profiles,” in
Quality Software (QSIC), 2010 10th International Conference on. IEEE,
2010, pp. 171–179.

[62] Z. Q. Zhou, “Using coverage information to guide test case selection
in adaptive random testing,” in Computer Software and Applications
Conference Workshops (COMPSACW), 2010 IEEE 34th Annual. IEEE,
2010, pp. 208–213.

52

