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ABSTRACT
The quality assurance formachine learning systems is becoming increasingly critical nowadays. While
many efforts have been paid on trained models from such systems, we focus on the quality of these
systems themselves, as the latter essentially decides the quality of numerous models thus trained.
In this article, we focus particularly on detecting bugs in implementing one class of model-training
systems, namely, linear classification algorithms, which are known to be challenging due to the lack
of test oracle. Existing work has attempted to use metamorphic testing to alleviate the oracle problem,
but fallen short on overlooking the statistical nature of such learning algorithms, leading to premature
metamorphic relations (MRs) suffering efficacy and necessity issues. To address this problem, we first
derive MRs from a fundamental property of linear classification algorithms, i.e., algorithm stability,
with the soundness guarantee. We then formulate such MRs in a way that is rare in usage but could
be more effective according to our field study and analysis, i.e., Past-execution Dependent MR (PD-
MR), as contrast to the traditional way, i.e., Past-execution Independent MR (PI-MR), which has
been extensively studied. We experimentally evaluated our new MRs upon nine well-known linear
classification algorithms. The results reported that the new MRs detected 37.6-329.2% more bugs
than existing benchmark MRs.

1. Introduction
Machine learning has been widely applied in a great

number of computational fields over the past few years.
In addition to those successful applications, such as spam
email filtering, item recommendation, and image recogni-
tion, machine learning has also been intensively applied re-
cently to some mission-critical tasks, e.g., medical diag-
nosis, financial distress forecasting, and autonomous driv-
ing [12, 36, 43]. However, despite its popularity in applica-
tion, the quality assurance of machine learning, especially
for its kernel learning programs, is still missing adequate at-
tention, while such assurance plays a vital role in the life
cycle of deploying machine learning systems.

Machine learning systems typically deploy previously
trained models from learning programs to provide smart-
decision services. Much recent research has targeted on
the deployed machine learning models, and found that they
could be vulnerable to adversarial attacks [8]. In order to
validate the reliability of such machine learning systems, ex-
isting work has mostly emphasized on testing those trained
machine learning models for deployment. For example, a
series of testing techniques based on neuron coverage have
been proposed for examining whether a machine learning
model, e.g., deep neural networks [39, 40, 50, 70], could
make wrong predications upon dedicatedly designed inputs.
With quite a few reported successful cases, existing work,
however, lacks enough attention on the quality assurance for
learning programs themselves, which is actually the foun-
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dation for the quality of thus trained models. Even worse,
such an overlooking of the learning programs could cause
its generated models to keep suffering from unknown qual-
ity problems.

To this end, in this article, we focus particularly on the
quality ofmachine learning programs themselves, and aim to
effectively detect potential bugs in them (such programs typ-
ically refer to the implementations of relevantmachine learn-
ing algorithms). We say that this problem has been more or
less overlooked by many machine learning researchers and
developers. The reason is that they tend to naturally be-
lieve that implementing machine learning programs faith-
fully according to respective algorithms should not be a
big problem. Besides, in practice, when the accuracy of a
trained model is somewhat low, developers could tend to at-
tribute the problem to their incorrect settings of specific al-
gorithm hyperparameters rather than to possible implemen-
tation bugs. On the other hand, since a trained model’s qual-
ity problems are likely to be caused by the potential bugs of
its corresponding learning program, fixing these bugs would
be extremely useful and of great advantage to avoiding future
problematic trained models. Nevertheless, although testing
such machine learning programs is vital and critical, it is not
that easy.

One of the key obstacles to testing machine learning pro-
grams is the oracle problem [2]. Considering that a typi-
cal machine learning program contains two parts, namely,
training and predicting, we focus mainly on the training
part, which is typically more complex and tend to con-
tain bugs, while the remaining predicting part commonly
refers to classic searching and reporting functionalities upon
trained models from the training part. With this setting, the
input of a learning program is the training set, and its out-
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put is the model parameter for the thus trained model. The
training set usually consists of instances sampled from an
unknown distribution, and the model parameter is usually a
high-dimensional vector. Hence, it is impossible to automat-
ically compute a correct model parameter on a dataset ran-
domly sampled from this unknown distribution based on the
learning algorithm (a.k.a. oracle problem). In other words,
one cannot easily obtain the expected output of a learning
algorithm for any given input. Even if considering the over-
all accuracy for the model instead of giving detailed model
parameters, one can only obtain a rough estimate (or with)
of the accuracy [63].

The other key obstacle to testing a machine learning pro-
gram is the statistical nature of its implemented machine
learning algorithm. A machine learning algorithm is usu-
ally designed on the basis of statistics, which should be in-
herently capable of hiding errors [14]. For example, in a
classification task, suppose that the model obtained by a ma-
chine learning program may get an accuracy of 90%. One
may confidently consider that this learning program is good
(even bug-free) due to this acceptable accuracy. However,
there is still a possibility that a bug resides in its implemen-
tation, and fixing this bug may further improve the accuracy
to 95%. Note that this is an interesting observation that bugs
of learning programs may not always cause an accuracy re-
duction and they could instead increase the accuracy in some
cases 1 . Therefore, the accuracy itself can give wrong hints
on the existence of bugs in machine learning programs. This
observation thoroughly reveals the difference between tra-
ditional program bugs and machine learning program bugs,
and it also challenges the efficacy of traditional testing tech-
niques that detect program bugs through observing a trained
model’s performance. Besides, it also reminds us of consid-
ering what properties of learning algorithms should be used
to effectively detect bugs.

In this article, we focus on testing the programs of lin-
ear machine learning algorithms, which have been widely
applied in popular machine learning applications, such as
logistic regression, support vector machine, and linear dis-
criminant analysis [1, 18, 26]. Some existing work [23, 68,
69] has proposed to apply metamorphic testing to alleviate
the oracle problem in testing learning programs. However,
they are restricted by the following limitations: (1) their se-
lected properties (i.e., metamorphic relations or MRs), e.g.,
shuffling the training data, do not produce different models,
thus would not reveal the kernel statistical nature of learning
programs, and are likely to be not that effective on detect-
ing bugs in machine learning programs; (2) their considered
properties for metamorphic testing sometimes lack theoret-
ical guarantee and can be accidentally violated. Therefore,
we in this article aim for a nice property that should touch the
kernel statistical nature of learning programs, and provide a
theoretical guarantee for the effectiveness of such MR-based

1Here are two typical examples:
- https://github.com/BVLC/caffe/issues/4202
- https://github.com/Britefury/self-ensemble-visual-domain-adapt-photo

testing.
At first glance, it is a very simple and even trivial is-

sue. But in fact, the existing methods are still not sufficiently
effective. The main reason is due to the target property of
metamorphic testing, i.e., metamorphic property. The meta-
morphic property fundamentally determines the efficacy of
methods, but the currently selected properties lack statistical
characteristics and theoretical guarantee. Thus it still needs
further exploration for the metamorphic testing of machine
learning programs.

Moreover, by investigating existing MR usages across
different fields, we observe that MRs could be divided
into two categories according to how they are formulated,
namely, Past-execution Independent MR (PI-MR) and Past-
execution Dependent MR (PD-MR). They differ in whether
the follow-up input generation in MR depends on specific
characteristics in past executions (e.g., output in the last ex-
ecution). For example, in PI-MR, the generation of a follow-
up input, a.k.a. metamorphic transformation, would depend
only on its corresponding source input, while in PD-MR,
the dependency would expand to both the source input and
source output, making the transformation non-trivial. Ac-
cording to our observations and experiences with MR-based
testing, our second focus in this article is to exercise and
explore PD-MR for better effectiveness in testing machine
learning programs.

To sum up, we in this article aim to (1) find a fundamen-
tal property associated with the kernel statistical natural of
machine learning algorithms, (2) formula the property as
the form of PD-MR, and (3) enable theoretical guarantee on
the formulated MRs. We would consider the kernel stability
nature of linear classification algorithms, and encode it into
two PD-MRswith theoretical guarantee, aiming to verify the
fundamental property of machine learning programs.

Systematic empirical evaluations show the high effec-
tiveness of our proposed MRs on bug detection. We con-
ducted experiments on programs of nine well-known linear
classification algorithms. To simulate bugs in learning pro-
grams, we generated 1,265 mutants through an improved
version of the Python mutation tool mutmut. The exten-
sive experiments showed the nice effectiveness of our MRs
on detecting bugs that disturb the algorithm stability. Com-
pared with the six state-of-the-art MRs proposed by existing
work [23, 69, 72], our MRs can be much more effective in
detecting bugs, with an improved mutant killing rate ranging
from 37.6% to 329.2%.

The rest of this article is organized as follows. Section 2
introduces background knowledge used in this work, includ-
ing machine learning foundations, linear classification al-
gorithms, and metamorphic testing. Section 3 elaborates
on how we encode the stability of linear classification al-
gorithms into two PD-MRs. Section 4 evaluates our pro-
posed MRs with nine algorithm implementations. Finally,
Section 5 discusses related work in recent years, and Sec-
tion 6 concludes this ariticle.
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2. Background
In this section, we introduce some background knowl-

edge involved with our work, including the machine learning
foundations, linear classification algorithms, and metamor-
phic testing.
2.1. Machine learning foundations

Machine learning is the study of computer algorithms
that improve system efficiency through experience [45].
Typically, a machine learning algorithm is designed to build
a model that gives predictions or makes decisions based on
the previous observation. For details, it would train a model
based on a labeled dataset (called training set) and expect
such a trained model to generalize its prediction ability to
data that it has not seen before. Such generalization ability
is the key property of a machine learning algorithm.

In machine learning fields, the probably approximately
correct (PAC) learning theory is used to provide a formal
description of an algorithm’s generalization ability [63], by
calculating a boundary of a trained model’s generalization
error. For example, in a binary classification task, assume
that a training setD = {(xi, yi)}mi=1 is sampled from a distri-
bution  independently. In this case, given a trained classi-
fication model or classifier ℎ, its empirical error denotes the
accuracy of this classifier ℎ with respect to the training set
D:

Ê(ℎ;D) = 1
m

m
∑

i=1
I(ℎ(xi) ≠ yi), (1)

where I(xi, yi) is an indicator function that takes value 1
when ℎ(xi) = yi holds and takes value 0 if otherwise. Then,the generalization error is calculated by the accuracy of clas-
sifier ℎ on the distribution  as follows:

E(ℎ;) = E(x,y)∼ [I(ℎ(x) ≠ y)] . (2)
Thus, we can bound the gap between the empirical error
Ê(ℎ;D) and the generalization error E(ℎ;) through the
HoefIding inequality [27]:
P (|E(ℎ)−Ê(ℎ)| ≥ �) ≤ 2 exp

(

−2m�2
)

, ∀� ∈ (0, 1). (3)
Although there have been several theoretical studies sim-

ilar to HoefIding inequality in 3 when estimating the gen-
eralization errors, they cannot give analysis results for spe-
cific algorithms. To overcome this weakness, one starts to
explore the stability of algorithms [58] to describe how the
output of a specific algorithm changes when modifying its
input. For a machine learning algorithm, its input refers to
a training set, and the modifications upon it can be normally
divided into two categories:

• Obtaining a new training set D̂ by replacing i-th ex-
ample in the training set D:
D = {(xi, yi)}mi=1 ⇒ D̂ = {(xi, yi)}mi=1,i≠j ∪{(x̂j , yj)}.

• Obtaining a new training set D̂ by removing i-th ex-
ample from the training set D:

D = {(xi, yi)}mi=1 ⇒ D̂ = {(xi, yi)}mi=1,i≠j .

Therefore, as can be seen from the above equations, another
advantage of stability analyses is that only the training set
needs to be used.

Furthermore, the equivalence between stability and gen-
eralization error bounds has also been extensively stud-
ied [4, 21, 34, 46]. Therefore, based on such equivalence
studies, stability can be considered as a core property of ma-
chine learning algorithms, and it may be more ideal in ap-
plication.
2.2. Linear classification algorithms

Since a multi-class classification task can be decom-
posed into multiple binary classification tasks, regardless of
whether one-vs.-one or one-vs.-all strategy is applied, we
simply consider a binary classification task here. Given any
example x = (x1,… , xn), the goal of classification is to
use its features (or attributes), i.e., {x1,… , xn}, to identify
which class it belongs to. A linear classifier attempts tomake
such classification decisions based on the value of a linear
combination of these features. For details, the classifier f
provides a weight vector denoted by w, and a bias term de-
noted by b. The decision logic of classifier f is

f (x;w) =
{

+1, wTx + b ≥ 0,
−1, wTx + b < 0. (4)

The weight vector w and bias term b are computed based
on the training set. Let D = {(xi, yi) ∣ yi ∈ {−1,+1}, i =
1,… , m} be the training set. Then, the classifier parame-
ters (w, b) are obtained by solving the following optimiza-
tion problem:

(w∗, b∗) = argmin
w∈ℝn, b∈ℝ

m
∑

i=1
l(wTxi + b, yi) +R(w), (5)

where function l(⋅, ⋅)∶ ℝ × ℝ → ℝ is the (surrogate) loss
function, such that (w, b) can achieve the lowest misclassifi-
cation error on the training set, and function R(⋅)∶ ℝn → ℝ
is the regularization to avoid overfitting [6] during the opti-
mization.

Besides, in some machine learning literatures [15, 29],
the bias term b may be formulated into the weight vector
w such that ŵ = (w, b) ∈ ℝn+1 for simpler presentation.
Then, correspondingly, we add a constant feature to x, i.e.,
take x̂ = (x, 1) ∈ ℝn+1. In this sense, the problem 5 can be
written as

ŵ∗ = argmin
ŵ∈ℝn+1

m
∑

i=1
l(ŵTx̂i, yi) + R(ŵ). (6)

Actually, there is a slight difference between the problems 5
and 6. That is, the former will not impose constraints on the
bias b, while the latter will indeed give some penalty to the
bias b.
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Despite its relatively simple usage, the linear classi-
fication model is still a preferred choice in many fields
due to its adequate inter-predictability and superior effi-
ciency. Especially, as the scale of tasks increases, a series
of algorithms are proposed to solve the optimization prob-
lem 5 [16, 19, 29, 31, 55, 74]. Unfortunately, these well-
designed algorithms often are very complicated and involve
massive hyper-parameters, and different tricks in the imple-
mentation might make it even worse. Therefore, it can be
extremely difficult to guarantee the correctness of the corre-
sponding programs.

It is also worth noting that, the essence of a machine
learning algorithm is basically an optimization algorithm,
i.e., solving an optimization problem to obtain parameters
of its expected model. However, the purpose is radically dif-
ferent from the conventional optimization algorithm, which
aims to find an optimal solution, while the goal of a machine
learning algorithm is actually to reduce the generalization er-
ror. Such fact also renders the analysis of machine learning
programs more challenging, since certain assumptions may
no longer be held, e.g., with the parameter (w, b) not being
the optimal solution of problem 5, with the gradient of loss
function w.r.t (w, b) vanishing, and so on.
2.3. Metamorphic testing

Metamorphic testing is an effective software testing
method against oracle problems [10]. From its first being
published in 1998 until now, metamorphic testing has been
well-adopted in various real-life applications [9, 37, 71]. It
successfully helped to detect a massive number of software
bugs.

The most critical step of applying metamorphic testing
is to find an effective metamorphic relation (MR), which is
a functional relation established among multiple inputs and
outputs of the tested program [10]. Instead of testing by
validating the output for a given single input, metamorphic
testing tries to test the program by checking whether the re-
lation among several input-output pairs is held or not. An
MR indeed encodes a necessary property of program (also
called metamorphic property in some literature [47, 57, 59])
into a relation among several inputs and outputs. Specifi-
cally, these inputs include source inputs and follow-up in-
puts, with their corresponding outputs being source outputs
and follow-up outputs. Generally, source inputs are given
by the testing program and the follow-up inputs are gener-
ally according to the source inputs and the source outputs.
Take the sine function as an example. There is a relation that
requires sin(x) = − sin(−x). To test a programP which real-
izes function sin(x), let input x be the source input. Then, the
follow-up input −x is calculated by x. Their corresponding
outputs, P (x) and P (−x), naturally become source output
and follow-up output. They should satisfy the relation that
P (x) = −P (−x). In this case, the relation P (x) = −P (−x)
is an MR, and it is easily derived from the oddness of the
sine function.

As machine learning programs often lack oracle, meta-
morphic testing also showed its prowess in previous re-

searches. Some metamorphic relations have been carefully
designed to test machine learning programs [23, 47, 69, 72].
In our work, we conduct a more in-depth study on the appli-
cation of MR in testing machine learning programs.
2.4. PI-MR and PD-MR

In previous work, a few MRs were designed for testing
machine learning programs. However, these MRs still not
be effective enough. We focus on linear classification algo-
rithms in this paper. We conclude the two main weaknesses
of existing MRs as follows:

(1) Lack of efficacy. The targeted metamorphic prop-
erty in their designed MR is not sound for testing machine
learning programs, such that they cannot detect bugs very
effectively. For example, according to the mutation analysis
results in [69], some MRs can not detect any bug. Further-
more, the proposed metamorphic relations are too weak to
touch the key property of machine learning algorithms. For
example, the MR that shuffling the training data does not
make use of the statistical properties of machine learning
programs, which leads to its poor performance [72, 23].

(2) Lack of necessity. The metamorphic relations are
too intuitive and lack a theoretical guarantee. For example,
some MRs were demonstrated not necessary for the algo-
rithms being implemented [69], and someMRswere defined
based on the users’ intuitive expectations and specific re-
quirements [72]. As we discussed earlier, the metamorphic
relation should encode the necessary property of the algo-
rithm. However, even though the tested learning program is
bug-free, the current relations still may not hold. We ana-
lyzed this kind of MR in detail in section 4.6.2.

To overcome these weaknesses, we try to borrow the
wisdom from the proposed MRs applied to other fields.
Through summarizing existing MRs in various fields [9, 76,
37], we find that the currentMRs can be divided into two cat-
egories, i.e., PI-MR and PD-MR. When an MR is unrelated
to the past execution result, we call it Past-execution Inde-
pendent MR, referred to as PI-MR. Contrarily, when an MR
utilizes the past execution result, we call it Past-execution
Dependent MR, referred to as PD-MR. Figure 1 and Fig-
ure 2 give the main procedures of PI-MR and PD-MR, re-
spectively. As shown in these figures, the only variance be-
tween the two MRs is how to generate the follow-up input,
i.e., the so-called metamorphic transformation  in the fig-
ures.

We use a typical example (i.e., shortest path problem) to
illustrate the difference between PI-MR and PD-MR. Sup-
pose the program P (x, y) implements a search of the shortest
path from x to y in a given graph, we can design the follow-
ing two typical MRs:

(I) Find the shortest paths from y to x, and check whether
P (y, x) is the reverse of P (x, y).

(II) Let (x, v1,… , vN , y) is the output of P (x, y), and
choose any integer k, where 1 ≤ k ≤ N . Then, check
whether P (x, y) = P (x, vk) + P (vk, y).
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Figure 1: Past-execution independent metamorphic relation

Source
input 𝒙

Follow-up
input 𝒯(𝒙)

Transformation 
𝒯(⋅)

Program 𝑷

Program 𝑷

Source
output 
𝑷(𝒙)

Follow-up
output 
𝑷(𝒯 𝒙 )

Relation
holds or not

Figure 2: Past-execution dependent metamorphic relation

Source
input 𝒙

Follow-up
input 

𝒯(𝒙, 𝑷(𝒙))

Transformation 
𝒯(⋅,⋅)

Program 𝑷

Program 𝑷

Source
output 
𝑷(𝒙)

Follow-up
output 

𝑷(𝒯(𝒙, 𝑷(𝒙)))

Relation
holds or not

In MR (I), the corresponding metamorphic transformation
 (⋅) is  (x, y) = (y, x) that only requires the source input,
thus being PI-MR. However, in MR (II), the transformation
 (⋅, ⋅) is  ((x, y), P (x, y)) = (x, vk), (vk, y) that needs bothsource input and source output, thus being PD-MR.

Through some existing works that investigate what kind
of MRs were effective [11, 7] and the efficacy of MRs across
several fields, such as compilers [37, 61], bio-informatics [9,
53], and so on. We conjecture that PD-MR can perform bet-
ter than PI-MR, which is also reflected in some existing re-
search [37, 38, 7]. Based on this conjecture, we later indeed
attempt to translate our designed metamorphic property into
PD-MRs.

3. Methodology
3.1. Encode stability into PD-MR

When applying metamorphic testing to machine learn-
ing programs, we first need to choose a reasonable property
as metamorphic property. Since the generalization property
is the key property of a machine learning algorithm, we take
it as the most straightforward and hopefully effective choice.
However, encoding the algorithm generalization into a suit-
able MR is impractical, because we do not naturally own the
true generalization error (to some extent, it is an oracle) of
the algorithm. Although one often uses the test accuracy
as an estimate of the generalization error, this is just an es-
timate rather than the true generalization error, as we dis-
cussed in Section 2. Based on this consideration, we hereby
use algorithm stability instead of generalization as metamor-
phic property, since the equivalence between stability and
generalization error bounds has also been extensively stud-
ied [4, 21, 34, 46]. In addition to the feasibility of encoding
this property into theMR, stability is also algorithm-specific
to be more optimized to analyze the specific machine learn-
ing program.

However, there is another problem remaining to be
solved. As we discussed earlier in Section 2, a PI-MR is
deficient inability to encode the critical property of the algo-
rithm, and it may also destroy the necessity of metamorphic
property. Thus, establishing a PD-MR of the algorithm is
undoubtedly a better choice. Furthermore, the output of ma-
chine learning programs is usually a set of parameters, which
is actually a vector. In this case, it is extremely difficult to
find and construct a relation between (source and follow-up)
outputs. To address this issue, we attempt to build a relation
between inference results of a given example. For example,
the source and follow-up output of linear classifier are (w, b)
and (ŵ, b̂), respectively. Therefore, for a given example x,
we can identify an equality (or inequality) relation between
f (x) = wTx + b and f̂ (x) = ŵTx + b̂.

Combining the above two points, we can formally define
our problem by the following.
Problem 1. Given source inputD, an example x, and a lin-
ear classification program P , how to generate the follow-up
input D̂ based on the algorithm stability, such that we can
obtain a metamorphic relation R(f (x), f̂ (x)), where

f (x) = wTx + b, (w, b) = P (D),
f̂ (x) = ŵTx + b̂, (ŵ, b̂) = P (D̂). (7)

3.2. Two stability-based MRs
At the first glance, to encode the stability only requires

the replacement or removal of the original training set (i.e.,
the source input). In other words, such modifications based
on stability is not directly related to the model parameter
(i.e., the source output). From this perspective, it may be
more appropriate for establishing a PI-MR. But in fact, How
to replace or remove an example of training set depends on
the source output. To further explain this statement, we pro-
vide the following two propositions.
Proposition 1. Given a dataset D = {(xi, yi)}mi=1, an addi-
tional example x, and a linear classification algorithm Φ,
let the output of the algorithm be (w, b) = Φ(D). Perturb
i-th example of D by

x̂i = xi + �, (8)
where � is any vector orthogonal to w (i.e., wT� = 0), and
obtain

D̂ = {(xi, yi)}mi=1,i≠j ∪ {(x̂j , yj)}. (9)

Suppose the output of the algorithm to be (ŵ, b) = Φ(D̂).
Then, we have that

yi
(

f (x) − f̂ (x)
)

= yi
(

(w − ŵ)Tx + (b − b̂)
)

(10)

is monotone with respect to yi(wTxi + b).

Proposition 2. Given a dataset D = {(xi, yi)}mi=1, an addi-
tional example x, and a linear classification algorithm Φ,
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let the output of the algorithm be (w, b) = Φ(D). Remove
i-th example of D, and obtain

D̂ = {(xi, yi)}mi=1,i≠j∖{(xj , yj)}. (11)

Suppose the output of the algorithm to be (ŵ, b) = Φ(D̂).
Then, we have that

yi
(

f (x) − f̂ (x)
)

= yi
(

(w − ŵ)Tx + (b − b̂)
)

(12)

is monotone with respect to yi(wTxi + b).

The proofs of these two propositions are simple and we in-
clude them in Appendix A for completeness.

Through the above two propositions, we can comfort-
ably translate the stability (replacement and removal) into
two PD-MRs, respectively. Specifically, based on the stabil-
ity of replacing/removing an example of the training set, we
can derive a monotone function with respect to the modified
example, which can be naturally encoded into a partial order
relation.

As shown in Figure 3 and Figure 4, we provide a visual
illustration for each proposition and its corresponding MR.
The green points and blue points represent positive and neg-
ative instances used for training, and the source input D is
made up of these instances. By executing the given linear
classification program P with input D, we attain the output
(w, b) = P (D). The black line is the linear classification hy-
perplane determined by (w, b). After replacing/removing an
example xi from dataset, we got the follow-up input D̂. The
follow-up output (ŵ, b̂) yields the next linear classification
hyperplane, which is indicated by the red dashed line. Ac-
tually, the proposed two MRs observe the hyperplane move-
ments when replacing/removing different examples. Instead
of directly monitoring the hyperplane (i.e., the changes of
(w, b)), MRs use the result f (x) = wTx + b for a given ex-
ample x to build a partial order relation.

Figure 3: An illustrative example of Proposition 1

(𝒘,𝑏)
𝒙!

(𝒘', 𝑏()

𝒙'!

3.3. Algorithms
In order to obtain a robust decision on whether the given

program violates the stability of the algorithm, we repeat the
replacement/removal of the training set D multiple times.
The MR of replacement stability is shown in Algorithm 1.
The MR of removal stability is shown in Algorithm 2.

Figure 4: An illustrative example of Proposition 2

(𝒘, 𝑏)

𝒙!(𝒘', 𝑏()

Algorithm 1 The MR of stability of replacement
Input: Given linear classification program P , source input

D = {(xi, yi)}mi=1, an additional example x.
Output: Whether the MR holds or not.
1: Initialize the sequence T = [].
2: Execute program P with input D to get output (w, b).
3: Compute ti = yi(wTxi + b) for i = 1,… , m.
4: Get the index set I of the sorted ti, i = 1,… , m.
5: for k = 1, 2,… , L do
6: Set i = Ik, and choose i-th example xi of D.
7: Compute a vector � such that wT� = 0.
8: Add a perturbation to xi, i.e., x̂i = xi + �.
9: Obtain follow-up input D̂ through replacing xi by x̂i,

i.e., D̂ = {(xi, yi)}mi=1,i≠j ∪ {(x̂j , yj)}.
10: Execute program P with follow-up input D̂ to attain

follow-up output (ŵ, b̂).
11: Update T :

T ← T .append (yi(wTx − ŵTx + b − b̂).
12: end for
13: if T is monotonically increasing/decreasing then
14: return True.
15: else
16: return False.
17: end if

In Algorithm 1, we use Gram–Schmidt process to yield
the vector � that is orthogonal to the vector w [13]. To en-
sure the perturbation small enough, the Euclidean norm of
� is fixed by 10−3, i.e., ‖�‖2 = 10−3. We set the iteration
number L to 30. Theoretically, on the one hand, too few it-
erations may make the lists T and T̂ too short, and thus not
be able to detect inconsistencies between them. On the other
hand, too largeLwill cause too many iterations, which costs
a lot of time. We did some experiments on different L (i.e.,
15, 30, 45, and 60) to verify this theory. The experimen-
tal results show that despite the algorithm with an iteration
number of 15 performed a little worse, the algorithm with
other iteration number performed exactly the same. These
results are consistent with our theory. Therefore, setting L
by a moderate value is a reasonable choice.

In algorithm 2, the rationale behind the setting of the it-
eration number L is similar to that in Algorithm 1, and we
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Algorithm 2 The MR of stability of removal
Input: Given linear classification program P , source input

D = {(xi, yi)}mi=1, an additional example x.
Output: Whether the MR holds or not.
1: Initialize the sequence T = [].
2: Execute program P with input D to get output (w, b).
3: Compute ti = yi(wTxi + b) for i = 1,… , m.
4: Get the index set I of the sorted ti, i = 1,… , m.
5: for k = 1, 2,… , L do
6: Set i = Ik, and choose i-th example xi of D.
7: Obtain follow-up input D̂ through removing xi from

D, i.e., D̂ = {(xi, yi)}mi=1,i≠j .
8: Execute program P with follow-up input D̂ to attain

follow-up output (ŵ, b̂).
9: Update T :

T ← T .append (yi(wTx − ŵTx + b − b̂).
10: end for
11: if T is monotonically increasing/decreasing then
12: return True.
13: else
14: return False.
15: end if

Table 1

Algorithm list
Type Name

Logistic Regression
NAG [54]
Newton [3]
LBFGS [77]
APG_L1 [32]
APG_L2 [32]

Support Vector ADMM_L1 [73]
Machine ADMM_L2 [73]

SQP_L1 [15]
SQP_L2 [15]

also set L to 30.

4. Evaluation
In this section, we evaluate our designed MRs, and com-

pare them toMRs proposed by existing work on their bug de-
tection effectiveness, for programs of ninewell-known linear
classification algorithms.
4.1. Research questions

We aim to answer the following two research questions:
RQ1 (Effectiveness): How effective are our designed

MRs on detecting bugs for linear classification programs, as
compared to MRs proposed by existing work?

RQ2 (Sensitivity): How sensitive are our designedMRs
on detecting bugs with respect to their different stability con-
sequences for linear classification programs, as compared to
MRs proposed by existing work?

Table 2

Mutation operators of mutmut
Name Description Example

AOR Replace arithmetic operator ‘+’ to ‘-’
LOR Replace logical operatior ‘and’ to ‘or’
ROR Replace relational operator ‘==’ to ‘!=’
SOR Replace shift operator ‘<<’ to ‘>>’
ASR Replace shortcut assignment operator ‘+=’ to ‘=’
KR Replace keyword ‘break’ to ‘continue’
AVR Replace assignment value ‘x = 1’ to ‘x = None’

Table 3

The newly added mutation operator
Name Description Example
POA Add parameter operation ‘1+x’ to ‘1+0.3*x’

4.2. Experimental subjects
We selected nine well-known linear classification algo-

rithms as shown in Table 1, including three logistic regres-
sion algorithms and six support vector machine algorithms.
They are either classic algorithms in the linear classifica-
tion field or recently published in top journals/conferences
with nice credits. Since their source codes are not directly
accessible, we chose to implement them by ourselves, ac-
cording to their algorithms presented in corresponding doc-
uments or papers. By a careful manual verification process,
we utilized our implementation as corresponding golden ver-
sions. To ensure the credibility of the golden versions, we
also compared the execution results of our implemented pro-
gram and the linear classification program in the scikit-learn
library [49]. The error (i.e., the Euclidean norm of two out-
puts) of the output results (i.e., a pair of (w, b)) of these two
programs is less than 10−6, suggesting the nice quality of our
implementation.

In order to better evaluate different MRs’ bug detection
effectiveness, we adopted popularmutation analyses [48, 20,
28] in software engineering, and generated mutants for those
programs, each of which contains one inserted syntactic bug.
Mutation analyses aim to generate mutants with syntactic
bugs for simulating realistic bugs in practice [33, 64], and
are used as a relatively promising way to evaluate differ-
ent treatments’ bug detection effectiveness. We used a well-
established mutation tool for Python, i.e., mutmut [28], and
Table 2 presents its supported seven mutation operators for
generating mutants.

However, we observe that mutmut’s supported mutation
operators have quite a limited ability to generate numerical
bugs, which are extremely common inmachine learning pro-
grams due to massive mathematical calculations. To be spe-
cific, the only operator to generate numerical bugs in mut-
mut is AOR, which substitutes an arithmetic operator + to
−, tending to largely interrupt a program’s logic and trigger
a program crash, thus easily detected. Therefore, in order to
better simulate such common numerical computational bugs
in machine learning, we additionally designed mutation op-
eration POA as in Table 3, which inserts a random constant
as coefficient c to programs’ numeric calculations, including
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Table 4

Details of generated mutants

Mutants (#) Algorithms Sum
NAG Newton LBFGS ADMM_L1 ADMM_L2 APG_L1 APG_L2 SQP_L1 SQP_L2

Num 101 96 240 199 205 123 97 88 116 1,265

a calculation expression, an assignment expression, a func-
tion parameter, and so on. This coefficient follows a normal
distribution  (0, 10).

For example, the Code Listing 1 shows a practical nu-
merical calculation in the ADMM algorithm, and line 2 con-
tains a square root calculation. Simply altering the symbol
‘+’ to ‘−’ will cause illegal calculation, and thus lead to the
program exception (e.g., RuntimeWarning) or even a pro-
gram crash, which can be easily discarded, thus being rela-
tively worthless. By using POA, Code Listing 2 can be gen-
erated by adding a coefficient of 0.5 to the formula in line
2. This type of bug often appears when misreading the al-
gorithm formula in practice, and we believe it can be indeed
more relatively worthy in bug detection evaluation.

After that, combining operators in both Table 2 and Ta-
ble 3, we eventually generated 1,265 mutations in total. De-
tails are in Table 4. We discarded not executable mutants or
some clearly equivalent oneswithmanual checking. Consid-
ering that we only focus on generating mutants for machine
learning programs’ training part, which is relatively short in
code length, we believe such mutants can be already ade-
quate for evaluating MRs.
Code Listing 1

A code piece of numerical calculation in ADMM algorithm
1 theta = np.linalg.norm(u,'fro') / tau_old

2 c = 1 / np.sqrt (1+ theta*theta)

3 tau = tau_old * theta * c

Code Listing 2

An example of numerical computation bug
1 theta = np.linalg.norm(u,'fro') / tau_old

2 c = 1 / np.sqrt (1+0.5* theta*theta)

3 tau = tau_old * theta * c

4.3. Experimental design
Then, we introduce our experimental design, includ-

ing dataset preparation for feeding into the former machine
learning programs, and descriptions about our considered
MRs for comparisons later.

Datasets. We randomly generate datasets (i.e., the orig-
inal dataset D) due to the following reasons. Firstly, our
designed MRs are indeed dataset-independent, not specifi-
cally designed for a specific task of the dataset, thus mak-
ing dataset selection unrestricted. Secondly, existing studies
have also pointed out that the randomly generated dataset can
work better in detecting bugs [22]. Although several existing

Table 5

Six MRs in previous work
No Description
MR-1 Shuffle of training data
MR-2 Permutation of training and testing features
MR-3 Permutation of class labels
MR-4 Addition of uninformative attributes
MR-5 Consistence with re-prediction
MR-6 Additional training samples

real-world datasets are applicable for testing the effective-
ness of machine learning algorithms, they maybe not as sen-
sitive as the randomly generated datasets in detecting bugs
of the machine learning program. Therefore, we adopted
scikit-learn [49] to generate synthetic datasets randomly.

Moreover, in order to reduce the running time of our ex-
periment to save time, we restricted the scale of randomly
generated datasets by 300 and its concerned feature number
between two to ten. Then, for any generated dataset, we also
divided it into two parts for our latter usage, a training set
(240 in size) and a test set (60 in size). The scale of our
datasets is much larger than some previous work [69, 72],
and the feature number also covers feature numbers used in
these work. Since larger datasets are usually more statisti-
cally significant, we believe our generated datasets are not
only enough for the linear classification task, but also pro-
duce feasible running time for training in experiments. Fur-
thermore, as we discussed earlier, a multi-class classification
task can be converted easily into multiple binary classifica-
tion tasks, thus we directly apply these algorithms to a binary
classification task. Thus, only two labels are considered in
generating datasets.

MRs. To evaluate our designed MRs’ bug detection ef-
fectiveness, we have prepared both clean buggy programs as
long as randomly generated datasets. For comparisons, we
aim to use both our designed MRs and those proposed by
existing work for bug detection later. Here, we briefly intro-
duce them as follows.

We chose six classical MRs (listed in Table 5) proposed
in previous work for comparisons. All of these six MRs can
be applied directly to the linear classification programs, and
have been evaluated with superior results in previous work.
For example, MR-2 is previously found to find all 12 bugs of
linear-SVM and RBFSVM [23], and MR-3 achieved a high
killing rate of 71.4% (15 out of 21) [69]. The details of these
MRs are as follows. In these MRs, datasetD is source input,
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and dataset D̂ is follow-up input.
- MR-1: Shuffle of training data [23, 72]. Dataset D̂ is
obtained by shuffling D. The accuracy of models trained
by D and D̂ should be the same.

- MR-2: Permutation of data features [69, 23]. Dataset
D̂ is obtained by permuting the features of D. The accu-
racy of models trained by D and D̂ should be the same.

- MR-3: Permutation of class labels [69]. DatasetD̂ is
obtained by permuting the class labels of D. The accu-
racy of models trained by D and D̂ should be the same.

- MR-4: Addition of uninformative attributes [69, 72].
Dataset D̂ is obtained by adding an uninformative at-
tribute to all data in D. The accuracy of models trained
by D and D̂ should be the same.

- MR-5: Re-prediction [69]. Dataset D̂ is obtained by
adding a random sample to the testing dataset toD for re-
prediction. The prediction results of models trained byD
and D̂ should be the same.

- MR-6: Additional training samples [69]. Dataset D̂ is
obtained by duplicating samples with a specific label in
D. The prediction results of the samples with the specific
label of models trained by D and D̂ should be the same.

4.4. Experimental process and setup
We now introduce our experimental process with pre-

pared resources and set up to answer the aforementioned two
research questions.

Process. With subjects (golden versions and corre-
sponding mutants), datasets (both training and testing sets),
and MRs prepared, we now introduce our experimental pro-
cess. For any considered MR, we aim to check whether it
is satisfied or not upon any considered mutant fed by gener-
ated datasets, according to a typical procedure presented as
in Figure 5. We call a mutant can be “killed” by anMRwhen
this MR is eventually violated upon this mutant following
this procedure. Note that, due to some statistical and numer-
ical bias during machine learning programs’ execution, we
choose randomly repeat the procedure for any mutant and
MR 100 times, only an MR is violated by a mutant more
than five times out of 100, we recognized as its killing upon
this mutant successfully.

In this procedure, a training set D is generated as the
source input, and then fed into a program (clean or buggy).
To be specific, the program actually points to a programwrit-
ten to train a linear classifier and produce weight vector and
bias as (w, b), possibly with an unknown bug. Then, if one
uses this classifier to predict, the output (w, b) would be the
model parameter, and used to give predictive results for the
given testing set. The predictive results andmodel parameter
(w, b) are collectively referred to as the source output. Based
on the source output and source input, the follow-up input D̂
can be generated. Similarly, the follow-up output consists
with output (ŵ, b̂) that is the output of executing program

with input D̂, and its corresponding predictive results of the
same test set. AnyMR actually points out some relationships
among source input and output, follow-up input and output,
that must be satisfied, otherwise violated.

Figure 5: Procedure of MR killing mutant
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Setup. Wedesigned the following independent variables
to control the experiments:

• Subject. We generate more than 1,265 mutants and
used them as our subjects for evaluating MR’s bug de-
tection effectiveness.

• MR. We controlled to select different MRs in ex-
periments. For selection, we consider both our de-
signed MRs as MR-P1 (for Proposition 1) and MR-P2
(for Proposition 2), and six MRs proposed in existing
work, i.e., from MR-1 to MR-6 as in Table 5.

• Algorithm. We used a total of nine different linear
classification algorithms for generating mutants. Dif-
ferent concerned algorithms in mutants may lead to
different experimental results when evaluating MR’s
bug detection effectiveness.

• Stability degree. We study how different MR can de-
tect bugs with respect to different stability degree in-
terruption to existing programs. We divided them into
three categories by considering their associated ac-
curacy consequences. For any mutant leading to a
large accuracy change (more than an absolute value of
0.05), we consider its stability degree to be “severe”.
For any leading to a relatively small accuracy change
(less than an absolute value of 0.05), we consider its
stability degree to be “light”. For those otherwise, we
consider it to be “negligible” or simply refer to it as
“other” category.

To measure the bug detection effectiveness, we focus on
the following dependent variable:

• Killing rate. It refers to the proportion of killed mu-
tants among all mutants considering any specific MR,
which is for measuring this MR’s bug detection effec-
tiveness.
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Table 6

Killed mutants when applying different MRs on experimental subjects

MRs Subjects Sum
NAG Newton LBFGS ADMM_L1 ADMM_L2 APG_L1 APG_L2 SQP_L1 SQP_L2

MR-1 1 2 21 55 70 4 7 30 30 220
MR-2 2 2 24 56 67 3 7 3 21 185
MR-3 74 27 139 53 68 13 16 16 17 423
MR-4 73 13 133 83 104 65 44 34 28 577
MR-5 7 4 28 57 68 6 8 4 20 202
MR-6 53 10 103 88 89 32 27 40 24 466
MR-P1 82 23 144 115 113 52 53 69 48 699
MR-P2 54 31 128 94 109 110 47 38 45 656

P1+P2 82 38 145 120 121 110 54 73 51 794
All MRs 84 46 158 136 123 121 64 79 51 862

Figure 6: Ovarall killing rate of MRs
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All experiments were conducted on a CPU server with
AMD EPYC 7401 24-Core processor and 128G of memory,
running Ubuntu 20.04.1 with GNU/Linux kernel 5.4.0. Our
code and experimental data are also available at https://gi
thub.com/yingzhuoy/MRs-of-linear-models.

To answer RQ1 (Effectiveness). We conducted exper-
iments for our designed MRs upon all generated mutants
for programs of different linear classification algorithms, as
compared to existing MR-1 to MR-6, and study their effec-
tiveness on bug detection, suggested by their corresponding
killing number of mutants and killing rates.

To answer RQ2 (Sensitivity). We divided mutants ac-
cording to their different interruption degrees to programs’
stability, and study their effectiveness upon mutants con-
cerning different stability degrees, i.e., “severe”, “light”, and
“other”, as mentioned before to see how sensitive our de-
signed MRs can be on detecting bugs that lead to different
stability interruption degrees.
4.5. Experimental results and analyses

We report and analyze experimental results, and answer
the preceding research questions in turn.

4.5.1. RQ1: effectiveness
Figure 6 shows the total killing rate of concerned MRs

on all subjects (i.e., 1,265 mutants). We use MR-1 to MR-6
to represent studied MRs proposed by existing work, whose
details can also be found in Table 5, while MR-P1 (or P1)
andMR-P2 (or P2) represent our proposedMRs in this work,
i.e., aforementioned Proposition 1 and 2 in Section 3. MR-
P1 and MR-P2 can achieve a nice killing rate of 55.3% and
51.9% mutants among all 1,265 ones, much more than those
of existing MRs (MR-1 to MR-6), i.e., only 14.6%–45.6% in
killing rates per MR. Moreover, when combing our MR-P1
and MR-P2 together, the killing rate (mutants that are killed
by either MR-P1 or MR-P2) can be up to 62.8% among all
1,265 mutants, already covering 92.2% of all detected mu-
tants by all studied eight MRs (68.1% mutants). Still, our
MRs’ killing rate indeed seems to be not so high, it may
be due to the following reasons: (1) there may exist some
statistically equivalent mutants in fact, and this denotes the
inevitable problem of mutation analyses [42], and has not
been perfectly addressed yet, (2) there may also exist some
mutants that do not destroy the program stability, which are
not specifically designed in our MRs’ consideration, i.e., out
of scope. We also give a few examples in our case study sec-
tion (section 4.6), in order to look a little deeper into those
survived mutants for your reference.

Table 6 shows some details of killed mutants when dif-
ferent MRs are applied to subjects associated with differ-
ent LC algorithms. As shown in Table 6, our approach can
kill the most mutants for all subjects, with either MR-P1
or MR-P2 achieving the largest number of killed mutants.
Especially, for most subjects, MR-P1 or MR-P2 killed far
more mutants than the other six MRs. For example, for
the ADMM_L1 subject, although MR-6 killed 88 mutants
successfully, which has already been the most effective one
among all the six MRs (MR-1 to MR-6) for comparison, our
proposedMR-P1 can kill 115mutants, with 27moremutants
(with a 38.5% degree larger in the killing number) than MR-
4. Furthermore, for the APG_L1 subject, MR-P2 killed 110
mutants (69.2% larger in number), while the most effective
MR-4 in existing work only killed 65 mutants.
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Table 7

The number of mutants of three stability degree categories

Category Subjects

NAG Newton LBFGS ADMM_L1 ADMM_L2 APG_L1 APG_L2 SQP_L1 SQP_L2

Light 13 10 25 47 20 90 16 14 12
Severe 59 28 105 80 104 30 48 35 36
Other 29 58 110 72 81 3 33 39 68

Table 8

Killing rate of MRs on with respect to mutants in the “light” category
MRs Subjects All Subjects

NAG Newton LBFGS ADMM_L1 ADMM_L2 APG_L1 APG_L2 SQP_L1 SQP_L2

MR-1 0.0% 0.0% 20.0% 2.1% 10.0% 1.1% 0.0% 100.0% 66.7% 12.6%
MR-2 7.7% 0.0% 24.0% 2.1% 5.0% 1.1% 0.0% 0.0% 8.3% 4.5%
MR-3 69.2% 30.0% 100.0% 4.3% 0.0% 0.0% 6.3% 0.0% 8.3% 16.6%
MR-4 76.9% 30.0% 100.0% 29.8% 70.0% 47.8% 31.3% 100.0% 83.3% 55.9%
MR-5 0.0% 0.0% 24.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.4%
MR-6 46.2% 0.0% 60.0% 17.0% 15.0% 11.1% 12.5% 78.6% 41.7% 24.3%
MR-P1 92.3% 30.0% 100.0% 59.6% 80.0% 27.8% 100.0% 100.0% 83.3% 60.3%
MR-P2 53.8% 30.0% 100.0% 38.3% 65.0% 85.6% 87.5% 100.0% 66.7% 72.5%
P1+P2 92.3% 40.0% 100.0% 66.0% 85.0% 85.6% 100.0% 100.0% 83.3% 83.4%
All MRs 92.3% 80.0% 100.0% 72.3% 95.0% 97.8% 100.0% 100.0% 83.3% 91.5%

When further combining the killed mutants of different
subjects together for an MR individually, our proposed MR-
P1 and MR-P2 also show their significant superiorities with
being the best two MRs clearly, i.e., 699 for MR-P1, and
656 for MR-P2. in total. Statistically, MR-P1 and MR-P2
killed 122–514 and 79–471 more mutants than any existing
MR, with an increasing rate of 21.1%–277.8% and 13.7%–
254.6%, respectively. If one compares them to the best MR
in existing work, i.e., MR-4, which killed 577 mutants in
total, our proposed MRs (P1+P2) indeed killed 37.6% (MR-
4) to 329.2% (MR-2) more mutants, suggesting their great
effectiveness in detecting buggy programs, as well as their
significant superiorities over existing MRs.

Therefore, we answer RQ1 as follows: our proposed
MRs (MR-P1 and MR-P2) show nice effectiveness on their
bug detection. When compared to existing MRs, they
also achieve significant superiorities (21.1%–277.8% and
13.7%–254.6% improvement on killing rates) over the stud-
ied six MRs proposed by existing work.

4.5.2. RQ2: sensitivity
As aforementioned, in order to better evaluate our pro-

posed MRs’ effectiveness and their sensitivity on bug de-
tection with respect to different stability interruptions, we
divided all 1,265 mutants into three categories: “severe”,
“light”, and “other”, according to their stability interruption
degree. To do so, we hereby used accuracy as the standard
and then partitioned all mutants as follows: (1) mutants lead-
ing to a large accuracy change into the “severe” category, (2)
mutants leading to a relatively small accuracy change into
the “light” category, (3) the remaining ones into the “other”
category.

Figure 7: Killing rate under di�erent thresholds
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Figure 7 shows the killing rate of all MRs of “severe”
and “light” categories under different thresholds (i.e., 0.025,
0.05, 0.075, and 0.1). According to the figure, the killing
rate of all MRs increased with the increase of thresholds in
both “severe” and “light” categories and the killing rate of
“severe” category are higher than “light” category. These
results indicate when accuracy changes more, the stability is
more damaged and bugs can be easier detected, which shows
the rationality of using accuracy as the standard. According
to our statistics, different thresholds have little effect on the
results of MR evaluation, so we randomly choose 0.05 as the
threshold to determine stability degree in our evaluation.

By investigating different effectiveness to different cat-
egories, we aim to evaluate MR’s effectiveness sensitivities
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Table 9

Killing rate of MRs with respect to mutants in the “severe” category
MRs Subjects All Subjects

NAG Newton LBFGS ADMM_L1 ADMM_L2 APG_L1 APG_L2 SQP_L1 SQP_L2

MR-1 1.7% 7.1% 12.4% 67.5% 65.4% 10.0% 14.6% 45.7% 58.3% 35.2%
MR-2 1.7% 7.1% 13.3% 68.8% 63.5% 6.7% 14.6% 8.6% 52.8% 32.2%
MR-3 96.6% 82.1% 96.2% 63.8% 65.4% 43.3% 31.3% 45.7% 41.7% 68.4%
MR-4 96.6% 25.0% 93.3% 82.5% 86.5% 73.3% 81.3% 54.3% 44.4% 78.9%
MR-5 11.9% 10.7% 17.1% 71.3% 65.4% 20.0% 16.7% 11.4% 52.8% 36.2%
MR-6 78.0% 28.6% 75.2% 81.3% 82.7% 73.3% 52.1% 57.1% 44.4% 69.9%
MR-P1 96.6% 53.6% 97.1% 95.0% 92.3% 90.0% 75.0% 85.7% 91.7% 89.9%
MR-P2 64.4% 85.7% 84.8% 92.5% 91.3% 100.0% 68.8% 68.6% 91.7% 83.8%
P1+P2 96.6% 96.4% 97.1% 97.5% 99.0% 100.0% 77.1% 97.1% 100.0% 96.0%
All MRs 100.0% 100.0% 99.0% 97.5% 100.0% 100.0% 97.9% 100.0% 100.0% 99.2%

on bugs with different stability interruptions. We specifi-
cally look into the experimental results for category “severe”
and “light”, as shown in Table 8 and Table 9.

Table 8 shows the killing rate of MRs with respect to
mutants in the “light” category (“light” mutants). We can
observe that MR-P1 and MR-P2 can achieve nice 60.3% and
72.5% killing rates when applying to “light” mutants of all
subjects, much higher than any MR from MR-1 to MR-6
(highest at 55.9%). Besides, for the APG_L2 subject, MR-
P1 achieves a killing rate of 100% and MR-P2 achieves a
killing rate of 87.5%, but the highest killing rate from MR-1
to MR-6 is only 31.3% (MR-4). Moreover, the joint killing
rate of MR-P1 and MR-P2 is also very high on most of the
subjects. In subject NAG, LBFGS, APG_L2 and SQP_L1,
the joint killing rates all exceed 90.0% and are the same as the
joint killing rate of all MRs. On some subjects, MR-P1 and
MR-P2 behave not so well, especially the Newton subject
(the killing rate of MR-P1 and MR-P2 are both 30.0%) and
the ADMM_L1 subject (the killing rate of MR-P1 is 56.9%,
the killing rate of MR-P2 is 38.3%). In these subjects, the
killing rate of other MRs is also very low, indicating that
bugs in these mutants are not easy to be detected. Still, our
MR-P1 and MR-P2 can achieve the best killing rate in these
cases (30.0% to Newton, and 59.6% to ADMM_L1).

Table 9 shows the killing rate of MRs with respect to
mutants in the “severe” category (“severe” mutants). MR-
P1 and MR-P2 achieve very high killing rates of 89.9% and
83.8% separately when applying to all “severe” mutants,
which is also higher than any other MRs from MR-1 to MR-
6. Besides, the killing rate of either MR-P1 and MR-P2 is
undoubtedly the highest for almost every subject, except for
the APG_L2 subject, whose killing rate of MR-P1 (75.0%)
is slightly lower than that of MR-4 (81.3%). Moreover, MR-
P1 and MR-P2 showed much higher killing rates than other
MRs in many subjects. For example, in the SQP_L2 subject,
both MR-P1 and MR-P2 have the killing rate 91.7%, while
the killing rate from MR-1 to MR-6 is at most 58.3% (MR-
1). The joint killing rates of MR-P1 and MR-P2 even exceed
95.0% in most subjects, suggesting its great effectiveness in
detecting bugs of “severe” mutants.

When combining Table 8 and Table 9, the two categories
of mutants indeed lead to varied stability interruptions to

programs, as well as their different difficulties to be detected.
The killing rates of “severe” mutants are relatively lower
than those of “light” mutants. This also echoes our intuition
that bugs that break properties more severely are relatively
easier to be detected. We can still observe that our proposed
MR-P1 and MR-P2 are stably effective and achieve nice su-
periorities for both “severe” and “light” mutants, suggesting
their nice sensitivity with respect to bugs with different sta-
bility interruptions.

Therefore, we answer RQ2 as follows: our proposed
MR-P1 and MR-P2 show their great effectiveness with nice
sensitivity. Its nice effectiveness holds with respect to bugs
with varied stability interruptions to programs.

4.6. Case studies
In this section, we present case studies in two aspects.

First, we analyze some stubborn mutants with the same per-
formance as the golden version. Bugs in these mutants are
difficult to be detected by accuracy or some PI-MRs, but can
be detected by our PD-MRs. Second, we discuss whether
the previously proposed MRs successfully encode a neces-
sary property of algorithms.
4.6.1. Stubborn mutants

A few generated mutants confirm the machine learn-
ing algorithms’ capability of hiding errors. These mutants
should have performed poorly, but the fact is just the op-
posite. This phenomenon not only explains the difficulty in
testing machine learning programs, but also clarifies the gap
between testing conventional software and machine learning
programs.

Code Listing 3 provides a typical example. In subject
NAG, a conditional statement If in code piece of BUG-73
conducts a line search to ensure the value of Lw (i.e., loss
function) decreased. In this case, themutation operator AOR
alters the symbol ‘*’ to ‘/’, which causes the sufficient de-
crease of Lw to be destroyed. This mutant is highly ineffi-
cient in convergence or even cannot converge, but it achieved
the same accuracy as the golden version on all ten datasets.
While the mutant was not killed by any of the existing MRs
(MR-1 to MR-6), it was killed by MR-P1 and MR-P2. Sim-
ilarly, BUG-87 (shown in Code Listing 4) is a mutant that
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modifies the calculation of the Sigmoid function. Actually,
this mutant will be equivalent to the golden version if we ap-
plied this mutated Sigmoid in both training and testing pro-
cess. In our experiment, we apply themutated sigmoid func-
tion in the training process and the correct sigmoid function
in the test process. Thus it should be recognized as a bug.
MR-P1 and MR-P2 killed this mutant but the other six MRs
did not.
Code Listing 3

BUG-73 in NAG
1 #----bug ----

2 #if Lw < L0 - l * alpha * (g0.T*g0):

3 if Lw < L0 - l * alpha / (g0.T*g0):

4 break

5 else:

6 l = beta * l

Code Listing 4

BUG-87 in NAG
1 def sigmoid(x):

2 # avoid overflow

3 #----bug ----

4 #return .5 * (1 + np.tanh (.5 * x))

5 return .5 * (1 + np.tanh (0.6698714043249333 *

x))

Code Listing 5

BUG-97 in NAG
1 what = np.array(w_hat).flatten ()

2 #----bug ----

3 #b = w_hat[-1]

4 b = w_hat [+1]

5 w = w_hat [0:w.shape [0]-1]

A more interesting example is BUG-97 (as shown in Code
Listing 5), which sets the value of the bias b by the first el-
ement of vector ŵ rather than the last element. Such mu-
tation operator significantly changes the bias of the trained
model, yet the model obtained by this mutant did not be im-
paired and even achieved higher accuracy than the model ob-
tained by the golden version (with an increase from 88.3%
to 93.3%). It should be more difficult to be killed, but four
MRs (MR-2, MR-4, MR-6 and MR-P1) succeeded.
4.6.2. The necessity of MRs

Since most of MRs in previous work were intuitive, they
are probably not consistent with machine learning theories
sometimes. We take the MR-4, which attain the best perfor-
mance among the previous six MRs, as an example to illus-
trate this issue. As in section 4.3, MR-4 adds an informa-
tive attribute to all examples of training set D to create the
follow-up input D̂. This transformation is actually equiva-
lent to introducing an additional bias b′ to model parameter,
i.e., which makes the follow-up output be (w, b, b′). In this
case, the bias b will be added into the regularization func-
tion, but the additional bias b′ will not. Thus, we can easily
find the following two situations where MR-4 cannot hold.

(1) The algorithms that do not have the bias,
(2) The algorithms that apply the regularization.

In practice, the loss functions of most machine learning al-
gorithms contain the regularization function, which severely
limits the usage of MR-4. We also used scikit-learn to verify
this analysis: When we set the bias to false (intercept =
False), or set the hyperparameter C of regularization larger
than three, MR-4 is violated.

Although we have tried our best to avoid the mutation
operator on the algorithms’ hyperparameters (e.g., mutate
C = 1.0 into C = 1.5) because the modification of hy-
perparameters should not be considered as a program bug,
Some extreme examples are still inevitable. For example,
BUG74 in Newton subject (as shown in Code Listing 6) is
equal to modifying the coefficient of the regularizer. In this
case, only MR-4 killed this mutant. The example was a lit-
tle particular, but similar mutants may also exist in other al-
gorithms of our experiment. Discarding such mutants will
only reduce the performance of MR-4 and improve the effi-
cacy results of other MRs. Incidentally, in our experiment,
we adopted the same hyperparameter setting as scikit-learn,
which applies the regularization by default. For the above
reasons, the advantages ofMR-4 in our experiment were also
seriously suspected.
Code Listing 6

BUG-74 in Newton
1 tmp = beta.copy(); tmp[n-1] = 0;

2 #----bug ----

3 #grad = - X.T * (y - self.p1(X * beta)) + 1*tmp

4 grad = - X.T * (y - self.p1(X * beta)) + 4.166* tmp

4.7. Threats analyses
The creation of datasets is one of external threats in our

experiment. To alleviate this threat, we tried two aspects.
(1). Refer to previous work to set the data scale. In two pre-
vious works, the size of the training dataset is a random num-
ber from 20 to 50 and the feature numbers are two and four
respectively [69, 72]. Our dataset size, 300, is larger than the
size in previous works and our feature number, randomly se-
lected from two to ten, also covers the numbers in previous
works. Thus, our generated datasets are enough for the lin-
ear classification task. (2). Randomly generate data values.
Since our MRs are dataset-independent and randomly gen-
erated datasets can work better in detecting bugs [22], we
randomly generated the data values to make the datasets of
better diversity. We used the built-in library in scikit-learn
[49] to randomly generate datasets, which makes the gener-
ated results with no bias.

The mutants generation is another external threat. We
selected a widely used Python mutation tool mutmut [28],
which was used to generate mutants for machine learning
programs [23]. This tool supports many traditional mutation
operators, which can create many different kinds of bugs.
Besides, we added a new mutation operator POA to make
this tool more adaptable to machine learning programs. We
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generated over 1,000 mutants in total using this tool, which
is enough for our experiment.

Possible bias in MR selection is also an external threat.
To avoid bias, we selected six MRs for comparison from
three previous works [69, 72, 23]. Some of these MRs ap-
peared in more than one work, which indicates these MRs
are classical andwidely used. As for the performance, we se-
lected both well-performed MRs and badly performed MRs
in previous work to ensure the diversity of MRs.

For the above efforts we made to avoid external validity,
our experiment settings should be appropriate.

The internal threat mainly comes from the implemen-
tation of nine linear classification algorithms we used. Al-
though these algorithms were published in famous publica-
tions, they were not open source. We implemented these
algorithms on our own according to their papers. To avoid
possible faults we would make during the implementation,
we carefully compared the training results of our implemen-
tation with the results of scikit-learn [49] and ensure the tol-
erance less than 10−6. In this way, this internal threat is gen-
erally avoided.

5. Related work
5.1. Testing on machine learning program

Metamorphic testing has been one of the most popular
techniques used for testing machine learning programs. Var-
ious MRs have been designed for different machine learning
algorithms, e.g., k-nearest neighbor classifier, support vector
machine, etc. In the following, we briefly overview related
work in this direction.

Xie et al. proposed 11 MRs to test programs that imple-
ment k-nearest neighbor (kNN) algorithm or theNaïve Bayes
(NBC) algorithm [69]. These MRs were divided into two
types according to whether they encode the necessary prop-
erties of algorithms or not. MRs encoding necessary proper-
ties were typically used for (software) verification, and those
remaining ones were typically used for software validation.
These MRs were evaluated on Weka [25] and some intro-
duced mutants of Weka.

Dwarakanath et al. designed four MRs for support vector
machine (SVM) and Deep Residual Network (ResNet) [23],
respectively. These MRs are specifically designed for the
characteristics of the convolution operation or the RBF ker-
nel function, including the permutation of input channels,
the shift of training and test features, etc. Experimental re-
sults showed that such proposed MRs effectively killed 71%
of generated mutants.

Xie et al. applied metamorphic testing to unsupervised
machine learning fields [72]. They focused on the clustering
algorithms and proposed 11 genericMRs of six kinds of data
transformation. However, these MRs were designed accord-
ing to user expectations instead of solid machine learning
theories.

Cheng et al. mainly focused on the properties of imple-
mentation bugs in machine learning programs [14]. The
Weka programs implement four algorithms (NBC, kNN,

SVM, and Decision Tree) were selected as the golden ver-
sion. The experiments were conducted on four different
kinds of datasets, the dataset of different distribution, dataset
of different sizes, imbalanced dataset, and special dataset.
The experimental results showed that there are some logi-
cally nonequivalent but statistically equivalent mutants, and
some of these mutants were very stubborn that they had the
same results with golden versions on all datasets used in the
experiment.
5.2. Testing on data, model, and framework

As in the survey of machine learning testing [75, 5],
many studies focus on other kinds of defects in machine
learning systems besides learning programs. We list some
typical researches in the following.

Defects in data. Since data is one of the most critical el-
ements in machine learning, there were many works aiming
at detecting bugs in data. Some of those works aimed at de-
bugging errors in polluted training datasets [30, 41], some
focused on detecting improper model inputs [44, 66], and
some focused on investigating the effects of dirty data [52].

Defects in models. Besides machine learning programs,
the trained model is another key component of the machine
learning system. In recent years, lots of work has been pro-
posed to test deep learning models.

Some of these studies borrowed the idea of structural
coverage in conventional software testing and proposed a
series of coverage criteria for deep neural networks, such
as DeepXplore [50], DeepGauge [40], DeepTest [62], etc.
Despite using the concept of coverage, many other meth-
ods were proposed for testing deep neural networks. For
example, Surprise Adequacy [35] measured how many sur-
prises did give input give compared to the training dataset.
DeepCheck [24] used the idea of program analysis, espe-
cially symbolic execution to test deep neural networks.

Defects in frameworks. This line of work mainly con-
centrates on the bugs in the code of deep learning frame-
works. For example, Pham et al. proposed to test the im-
plementation of deep learning libraries (TensorFlow, CNTK
and Theano) through differential testing [51]. There were
also many other works in testing machine learning frame-
work [60, 67].

6. Conclusion and future work
The quality assurance for machine learning systems has

gained growing popularity. However, existing researchers
have mainly focused on the quality of the machine learning
models deployed in the systems, and neglected the quality
of the learning programs, which actually the foundation for
the quality of thus trained models. We, in this paper, focus
particularly on the quality of machine learning programs, es-
pecially those implementing linear classification algorithms.
To do so, we derive fundamental stability properties from
linear classification algorithms’ kernel statistical nature and
propose two PD-MRs accordingly for effectively detecting
bugs in learning programs potentially.
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We also experimentally evaluated our proposed MRs
upon nine well-known linear classification algorithms, and
observe a significant improvement over six benchmark MRs
proposed by existing work, with 37.6–329.2% bugs being
detected. Our experimental results also somehow confirm
our conjecture that PD-MRs can be more effective than PI-
MRs, which is also reflected in some other research [37].

Our research also deserves further research along this
line. On one hand, our proposed MRs’ specialties and their
effectiveness in detecting different types of machine learn-
ing bugs might deserve more researches. On the other hand,
we also expect more effective PD-MRs to be explored in the
future, for different machine learning algorithms besides lin-
ear classification ones, in order to better maintain the quality
assurance of machine learning systems.

References
[1] Balakrishnama, S., Ganapathiraju, A., 1998. Linear discriminant

analysis-a brief tutorial, in: Institute for Signal and information Pro-
cessing, pp. 1–8.

[2] Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S., 2014.
The oracle problem in software testing: A survey. IEEE transactions
on software engineering 41, 507–525.

[3] Bishop, C.M., 2006. Pattern recognition and machine learning.
springer.

[4] Bousquet, O., Elisseeff, A., 2002. Stability and generalization. Jour-
nal of machine learning research 2, 499–526.

[5] Braiek, H.B., Khomh, F., 2020. On testing machine learning pro-
grams. Journal of Systems and Software 164, 110542.

[6] Bühlmann, P., Van De Geer, S., 2011. Statistics for high-dimensional
data: methods, theory and applications. Springer Science & Business
Media.

[7] Cao, Y., Zhou, Z.Q., Chen, T.Y., 2013. On the correlation between
the effectiveness of metamorphic relations and dissimilarities of test
case executions, in: 2013 13th International Conference on Quality
Software, IEEE. pp. 153–162.

[8] Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopad-
hyay, D., 2018. Adversarial attacks and defences: A survey. arXiv
preprint arXiv:1810.00069 .

[9] Chen, T.Y., Ho, J.W., Liu, H., Xie, X., 2009. An innovative approach
for testing bioinformatics programs using metamorphic testing. BMC
bioinformatics 10, 24.

[10] Chen, T.Y., Kuo, F.C., Liu, H., Poon, P.L., Towey, D., Tse, T., Zhou,
Z.Q., 2018. Metamorphic testing: A review of challenges and oppor-
tunities. ACM Computing Surveys (CSUR) 51, 1–27.

[11] Chen, T.Y., Tse, T., Zhou, Z.Q., 2010. Semi-proving: An integrated
method for program proving, testing, and debugging. IEEE Transac-
tions on Software Engineering 37, 109–125.

[12] Chen, W.S., Du, Y.K., 2009. Using neural networks and data mining
techniques for the financial distress prediction model. Expert systems
with applications 36, 4075–4086.

[13] Cheney, W., Kincaid, D., 2009. Linear algebra: Theory and applica-
tions. The Australian Mathematical Society 110.

[14] Cheng, D., Cao, C., Xu, C., Ma, X., 2018. Manifesting bugs in ma-
chine learning code: An explorative study with mutation testing, in:
2018 IEEE International Conference on Software Quality, Reliability
and Security (QRS), IEEE. pp. 313–324.

[15] Chiu, C.C., Lin, P.Y., Lin, C.J., 2020. Two-variable dual coordinate
descent methods for linear svm with/without the bias term, in: Pro-
ceedings of the 2020 SIAM International Conference onDataMining,
SIAM. pp. 163–171.

[16] Chou, H.Y., Lin, P.Y., Lin, C.J., 2020. Dual coordinate-descent meth-
ods for linear one-class svm and svdd, in: Proceedings of the 2020
SIAM International Conference onDataMining, SIAM. pp. 181–189.

[17] Cohen, A., 2014. Surrogate Loss Minimization. Ph.D. thesis.
[18] Cortes, C., 1995. Support vector machine .
[19] Defazio, A., Bach, F., Lacoste-Julien, S., 2014. Saga: A fast incre-

mental gradient method with support for non-strongly convex com-
posite objectives, in: Advances in neural information processing sys-
tems, pp. 1646–1654.

[20] Denisov, A., Pankevich, S., 2018. Mull it over: Mutation testing based
on llvm, in: 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pp. 25–31. doi:10
.1109/ICSTW.2018.00024.

[21] Devroye, L., Wagner, T., 1979. Distribution-free performance bounds
for potential function rules. IEEETransactions on Information Theory
25, 601–604.

[22] Duran, J.W., Ntafos, S.C., 1984. An evaluation of random testing.
IEEE Transactions on Software Engineering SE-10, 438–444. doi:10
.1109/TSE.1984.5010257.

[23] Dwarakanath, A., Ahuja, M., Sikand, S., Rao, R.M., Bose, R.J.C.,
Dubash, N., Podder, S., 2018. Identifying implementation bugs in
machine learning based image classifiers using metamorphic testing,
in: Proceedings of the 27thACMSIGSOFT International Symposium
on Software Testing and Analysis, pp. 118–128.

[24] Gopinath, D., Pasareanu, C.S., Wang, K., Zhang, M., Khurshid, S.,
2019. Symbolic execution for attribution and attack synthesis in neu-
ral networks, in: 2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion),
IEEE. pp. 282–283.

[25] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Wit-
ten, I.H., 2009. The weka data mining software: an update. ACM
SIGKDD explorations newsletter 11, 10–18.

[26] Hilbe, J.M., 2009. Logistic regression models. CRC press.
[27] Hoeffding, W., 1994. Probability inequalities for sums of bounded

random variables, in: The Collected Works of Wassily Hoeffding.
Springer, pp. 409–426.

[28] Hovmöller, A., . mutmut · pypi. https://pypi.org/project/mutmut/.
[29] Hsieh, C.J., Chang, K.W., Lin, C.J., Keerthi, S.S., Sundararajan, S.,

2008. A dual coordinate descent method for large-scale linear svm, in:
Proceedings of the 25th international conference on Machine learn-
ing, pp. 408–415.

[30] Hynes, N., Sculley, D., Terry, M., 2017. The data linter: Lightweight,
automated sanity checking for ml data sets, in: NIPS MLSys Work-
shop.

[31] Ito, N., Takeda, A., Toh, K.C., 2017a. A unified formulation and fast
accelerated proximal gradient method for classification. The Journal
of Machine Learning Research 18, 510–558.

[32] Ito, N., Takeda, A., Toh, K.C., 2017b. A unified formulation and fast
accelerated proximal gradient method for classification. Journal of
Machine Learning Research 18, 1–49. URL: http://jmlr.org/paper
s/v18/16-274.html.

[33] Jia, Y., Harman, M., 2010. An analysis and survey of the development
of mutation testing. IEEE transactions on software engineering 37,
649–678.

[34] Kearns, M., Ron, D., 1999. Algorithmic stability and sanity-check
bounds for leave-one-out cross-validation. Neural computation 11,
1427–1453.

[35] Kim, J., Feldt, R., Yoo, S., 2019. Guiding deep learning system test-
ing using surprise adequacy, in: 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), IEEE. pp. 1039–1049.

[36] Kononenko, I., 2001. Machine learning for medical diagnosis: his-
tory, state of the art and perspective. Artificial Intelligence in
medicine 23, 89–109.

[37] Le, V., Afshari, M., Su, Z., 2014. Compiler validation via equivalence
modulo inputs. ACM SIGPLAN Notices 49, 216–226.

[38] Le, V., Sun, C., Su, Z., 2015. Finding deep compiler bugs via guided
stochastic program mutation. ACM SIGPLAN Notices 50, 386–399.

[39] Ma, L., Juefei-Xu, F., Xue, M., Li, B., Li, L., Liu, Y., Zhao, J., 2019.
Deepct: Tomographic combinatorial testing for deep learning sys-
tems, in: 2019 IEEE 26th International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER), IEEE. pp. 614–618.

First Author et al.: Preprint submitted to Elsevier Page 15 of 17

http://dx.doi.org/10.1109/ICSTW.2018.00024
http://dx.doi.org/10.1109/ICSTW.2018.00024
http://dx.doi.org/10.1109/TSE.1984.5010257
http://dx.doi.org/10.1109/TSE.1984.5010257
https://pypi.org/project/mutmut/
http://jmlr.org/papers/v18/16-274.html
http://jmlr.org/papers/v18/16-274.html


Short Title of the Article

[40] Ma, L., Juefei-Xu, F., Zhang, F., Sun, J., Xue, M., Li, B., Chen, C.,
Su, T., Li, L., Liu, Y., et al., 2018a. Deepgauge: Multi-granularity
testing criteria for deep learning systems, in: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engi-
neering, pp. 120–131.

[41] Ma, S., Liu, Y., Lee, W.C., Zhang, X., Grama, A., 2018b. Mode: au-
tomated neural network model debugging via state differential analy-
sis and input selection, in: Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pp. 175–186.

[42] Madeyski, L., Orzeszyna, W., Torkar, R., Jozala, M., 2013. Overcom-
ing the equivalent mutant problem: A systematic literature review and
a comparative experiment of second order mutation. IEEE Transac-
tions on Software Engineering 40, 23–42.

[43] Menze, M., Geiger, A., 2015. Object scene flow for autonomous ve-
hicles, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3061–3070.

[44] Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B., 2017. On de-
tecting adversarial perturbations. arXiv preprint arXiv:1702.04267
.

[45] Mitchell, T.M., et al., 1997. Machine learning. Burr Ridge, IL: Mc-
Graw Hill 45, 870–877.

[46] Mukherjee, S., Niyogi, P., Poggio, T., Rifkin, R., 2006. Learning the-
ory: stability is sufficient for generalization and necessary and suf-
ficient for consistency of empirical risk minimization. Advances in
Computational Mathematics 25, 161–193.

[47] Murphy, C., Kaiser, G.E., Hu, L., 2008. Properties of machine learn-
ing applications for use in metamorphic testing .

[48] Offutt, J., Li, N., . mujava home page. https://cs.gmu.edu/~offutt/m
ujava/ Accessed June 2013.

[49] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,
Duchesnay, E., 2011. Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research 12, 2825–2830.

[50] Pei, K., Cao, Y., Yang, J., Jana, S., 2017. Deepxplore: Automated
whitebox testing of deep learning systems, in: proceedings of the 26th
Symposium on Operating Systems Principles, pp. 1–18.

[51] Pham, H.V., Lutellier, T., Qi, W., Tan, L., 2019. Cradle: cross-
backend validation to detect and localize bugs in deep learning li-
braries, in: 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE), IEEE. pp. 1027–1038.

[52] Qi, Z., Wang, H., Li, J., Gao, H., 2018. Impacts of dirty data: and
experimental evaluation. arXiv preprint arXiv:1803.06071 .

[53] Ramanathan, A., Steed, C.A., Pullum, L.L., 2012. Verification of
compartmental epidemiological models using metamorphic testing,
model checking and visual analytics, in: 2012 ASE/IEEE Interna-
tional Conference on BioMedical Computing (BioMedCom), IEEE.
pp. 68–73.

[54] Ruder, S., 2016. An overview of gradient descent optimization algo-
rithms. arXiv preprint arXiv:1609.04747 .

[55] Schmidt, M., Le Roux, N., Bach, F., 2017. Minimizing finite sums
with the stochastic average gradient. Mathematical Programming 162,
83–112.

[56] Schulam, P., Saria, S., 2019. Can you trust this prediction? auditing
pointwise reliability after learning. arXiv preprint arXiv:1901.00403
.

[57] Segura, S., Fraser, G., Sanchez, A.B., Ruiz-Cortés, A., 2016. A survey
on metamorphic testing. IEEE Transactions on software engineering
42, 805–824.

[58] Shalev-Shwartz, S., Shamir, O., Srebro, N., Sridharan, K., 2010.
Learnability, stability and uniform convergence. The Journal of Ma-
chine Learning Research 11, 2635–2670.

[59] Singh, G., et al., 2012. An automated metamorphic testing technique
for designing effective metamorphic relations, in: International Con-
ference on Contemporary Computing, Springer. pp. 152–163.

[60] Srisakaokul, S., Wu, Z., Astorga, A., Alebiosu, O., Xie, T., 2018.
Multiple-implementation testing of supervised learning software., in:

AAAI Workshops, pp. 384–391.
[61] Tao, Q., Wu, W., Zhao, C., Shen, W., 2010. An automatic testing

approach for compiler based on metamorphic testing technique, in:
2010 Asia Pacific Software Engineering Conference, IEEE. pp. 270–
279.

[62] Tian, Y., Pei, K., Jana, S., Ray, B., 2018. Deeptest: Automated testing
of deep-neural-network-driven autonomous cars, in: Proceedings of
the 40th international conference on software engineering, pp. 303–
314.

[63] Valiant, L.G., 1984. A theory of the learnable. Communications of
the ACM 27, 1134–1142.

[64] Vu Do, H., Robach, C., Delaunay, M., 2006. Mutation analysis for re-
active system environment properties, in: Second Workshop on Mu-
tation Analysis (Mutation 2006 - ISSRE Workshops 2006), pp. 2–2.
doi:10.1109/MUTATION.2006.9.

[65] Wainwright, K., et al., 2005. Fundamental methods of mathematical
economics. McGraw-Hill/Irwin.

[66] Wang, J., Dong, G., Sun, J., Wang, X., Zhang, P., 2019. Adversar-
ial sample detection for deep neural network through model mutation
testing, in: 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE), IEEE. pp. 1245–1256.

[67] Wang, Z., Yan, M., Chen, J., Liu, S., Zhang, D., 2020. Deep learning
library testing via effective model generation, in: Proceedings of the
28th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering,
pp. 788–799.

[68] Xie, X., Ho, J., Murphy, C., Kaiser, G., Xu, B., Chen, T.Y., 2009.
Application of metamorphic testing to supervised classifiers, in: 2009
Ninth International Conference on Quality Software, IEEE. pp. 135–
144.

[69] Xie, X., Ho, J.W., Murphy, C., Kaiser, G., Xu, B., Chen, T.Y., 2011.
Testing and validating machine learning classifiers by metamorphic
testing. Journal of Systems and Software 84, 544–558.

[70] Xie, X., Ma, L., Juefei-Xu, F., Xue, M., Chen, H., Liu, Y., Zhao, J.,
Li, B., Yin, J., See, S., 2019. Deephunter: A coverage-guided fuzz
testing framework for deep neural networks, in: Proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pp. 146–157.

[71] Xie, X., Wong, W.E., Chen, T.Y., Xu, B., 2013. Metamorphic slice:
An application in spectrum-based fault localization. Information and
Software Technology 55, 866–879.

[72] Xie, X., Zhang, Z., Chen, T.Y., Liu, Y., Poon, P.L., Xu, B., 2020.
Mettle: a metamorphic testing approach to assessing and validating
unsupervised machine learning systems. IEEE Transactions on Reli-
ability .

[73] Ye, G.B., Chen, Y., Xie, X., 2011. Efficient variable selection in sup-
port vector machines via the alternating direction method of multi-
pliers, in: Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, pp. 832–840.

[74] Yu, H.F., Huang, F.L., Lin, C.J., 2011. Dual coordinate descent meth-
ods for logistic regression and maximum entropy models. Machine
Learning 85, 41–75.

[75] Zhang, J.M., Harman, M., Ma, L., Liu, Y., 2020. Machine learning
testing: Survey, landscapes and horizons. IEEE Transactions on Soft-
ware Engineering .

[76] Zhou, Z.Q., Xiang, S., Chen, T.Y., 2015. Metamorphic testing for
software quality assessment: A study of search engines. IEEE Trans-
actions on Software Engineering 42, 264–284.

[77] Zhu, C., Byrd, R.H., Lu, P., Nocedal, J., 1997. Algorithm 778: L-
bfgs-b: Fortran subroutines for large-scale bound-constrained opti-
mization. ACM Transactions on Mathematical Software (TOMS) 23,
550–560.

First Author et al.: Preprint submitted to Elsevier Page 16 of 17

https://cs.gmu.edu/~offutt/mujava/
https://cs.gmu.edu/~offutt/mujava/
http://dx.doi.org/10.1109/MUTATION.2006.9


Short Title of the Article

A. Proof of Proposition 1 and Proposition 2
We start by defining some notation. Given dataset D =

{(xi, yi)}mi=1 , where xi is an n-dimensional example, and
yi ∈ {−1,+1}. A linear classification algorithm attempts to
solve the following optimization problem:

min
w
J (w;D) = L(w;D) + R(w),

where w ∈ ℝn is the vector of model parameter, function
L(⋅, ⋅)∶ ℝn × ℝm×n → ℝ is any given loss function (e.g.,
Cross Entropy, Hinge loss, modified Huber loss, and so on),
and R(⋅)∶ ℝn → ℝ is any regularization function (e.g., l1norm, l2 norm, and even Elastic loss). Since the loss func-
tion L can be decomposed into the summation of losses for
each example, the objective function can be reformed as

J (w;D) = 1
n

m
∑

i=1
l(w; (xi, yi)) + R(w).

Let ti = yi(wTxi), i = 1,… , m, we can obtain that
l(w; (xi, yi)) = l(ti), i = 1,… , m. (13)

The above equation holds due to that function l(⋅, ⋅) is the
surrogate loss of 0∕1-loss [17]. Besides, it also needs to be
mentioned is that the surrogate loss functions are all convex
functions (with respect to variable t).

Similar to [56], we also assume that the output w∗ of
algorithm subjects to

∇J (w∗) = 1
n

m
∑

i=1

)l
)t
(ti) ⋅ yixi + ∇(w∗) = c, (14)

where ti = w∗Txi, and c ∈ ℝn is any constant vector. For
simplicity, we denote the ∇J (w) by �(w). We can compute
the Hessian matrix of J (w) ( i.e., the Jacobian of �(w)) by

 �(w) = ∇2wJ (w) =
1
n

m
∑

i=1

)2l
)t2

(ti) ⋅ xixiT + ∇2(w).

Next, we try to prove Proposition 1, and the proof of
Proposition 2 is similar to the proof of Proposition 1. With-
out loss of generality, we consider that the n-th example xnis replaced.
Proof. Let the perturbed example be x̂n, where x̂m = xm+
�. In this case, the modified dataset D̂ is D̂ = {xi, yi}m−1i=1 ∪
{x̂m, ym}, and the corresponding loss function is

J (w; D̂) = 1
n

(m−1
∑

i=1
l(w; (xi, yi)) + l(w; (xm, ym))

)

+R(w).

Now that the loss function has changed, the output of the
algorithm has also changed accordingly. We denote the
changed output by ŵ∗, and it should also meet the Equa-
tion 14:

∇wJ (ŵ∗) =
1
n

m
∑

i=1

)l
)t
(t̂i) ⋅ yixi + ∇(ŵ∗) = c,

where t̂i = ŵ∗Txi. Due to the (semi)-smoothness of loss
and regularizer, we can use implicit function theorem [65] to
conclude that there exists a local function such that  (xn) =
w∗. In other words, there is a map from example xn to
trained model’s parameterw∗. Hence, we can roughly com-
pute the ŵ∗ through
ŵ∗ −w∗ =  (x̂n) −  (xn)

≈
) 
)xn

(xn)(x̂n − xn)

= −
(

w�(w∗,xn)
)−1xn�(ŵ,xn, yn)(x̂n − xn)

= −1
n
( �(w))−1

(

yn
)l
)t
(tn) +

)2l
)t2

(tn)xnŵ⊤
)

�.

To avoid the computation of Jacobian, we set the perturba-
tion � as a vector orthogonal to w, i.e., �Tw. In this sense,
we have

f̂ (x) − f (x) = (ŵ∗ −w∗)Tx

= −1
n
yn
)l
)t
(tn)xT

(

w�(w∗,xn)
)−1 �

= −1
n
yn
)l
)t
(tn) ⋅ C,

where we denote xT (∇w�(w∗,xn)
)−1 � by C since it is a

constant scalar. Now, we can obtain that

yn(f̂ (x) − f (x)) = −
C
n
)l
)t
(tn). (15)

Since the l(⋅) is convex w.r.t. variable t, the first-derivation
of l(⋅) should be non-decreasing, which indicates the mono-
tonicity of function yn(f̂ (x) − f (x)). □
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