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Abstract

Nowadays spreadsheets are very popular and being widely used. However, they

can be prone to various defects and cause severe consequences when end users poorly

maintain them. Our research communities have proposed various techniques for

automated detection of spreadsheet defects, but they commonly fall short of e�ec-

tiveness, either due to their limited scope or relying on strict patterns. In this arti-

cle, we discuss and improve one state-of-the-art technique, CUSTODES, which ex-

ploits spreadsheet cell clustering and defect detection to extend its scope and make

its detection patterns adaptive to varying spreadsheet styles. Still, CUSTODES can be

prone to problematic clustering when accidentally involving irrelevant cells, leading

to a largely reduced detection precision. Regarding this, we present WARDER to re-

�ne CUSTODES’s spreadsheet cell clustering based on three extensible validity-based

properties. Experimental results show that WARDER could improve the precision by

19.1% on spreadsheet cell clustering, which contributed to a precision improvement of

23.3∼24.3% for spreadsheet defect detection, as compared to CUSTODES (F-measure

increased from 0.71 to 0.79∼0.82). WARDER also exhibited satisfactory results on

another practical large-scale spreadsheet corpus VEnron2, improving the defect de-

tection precision by 10.7∼21.2% over CUSTODES.
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1. Introduction

Nowadays spreadsheets, as a popular application of end-user software, have been

widely used in data storage, �nancial analyses, and quality control [49], with over 750

million users for representative Microsoft Excel alone [11]. However, in spite of this

popularity, spreadsheets are found to be error-prone [46], and can cause catastrophic5

consequences, e.g., massive �nancial loss [1]. Such errors can exhibit in various forms,

spreading from data cells to formula cells in spreadsheets, and existing studies [45]

have suggested that the latter could commonly be the root causes. Within the scope

of this article, we name the errors in formula cells by defects in spreadsheets (similar

to bugs in traditional programs), and focus on e�ective techniques for detecting them10

automatically.

Detecting spreadsheet defects can be non-trivial. First, spreadsheets are typically

maintained by non-programmer end-users (usually �nancial experts). Their behav-

iors can involve various unprofessional operations (from the point of view of pro-

grammers), e.g., overwriting a formula with a plain value or replacing it with another15

plausible formula, simply for ad hoc purposes (e.g., to �x a single incorrect data) [45].

Such operations can easily lead to a boosting of spreadsheet defects, since the original

computational semantics is overwritten or altered accidentally. Second, auditing or

tracking services are typically unavailable for common spreadsheet usages [37], and

this fact results in the loss of clues on how spreadsheet defects have been introduced20

and where they are located. Third, semantic relationships among spreadsheet cells

are typically hidden, and this fact results in the di�culties in automatically reasoning

over spreadsheets for potential defects.

To address these challenges, our research community has proposed various spread-

sheet defect detection techniques. For example, they rely on table header informa-25

tion to infer type inconsistencies in formula references (e.g., UCheck [4] and Dimen-

sion [12]), exploit speci�c patterns (e.g., rectangles) to recognize missing or inconsis-

tent formulas (e.g., AmCheck [19] and CACheck [20]), or use adaptive learning to de-

tect anomalies in formula cells (e.g., CUSTODES [13], Melford [52], and ExceLint [9]).

However, although producing promising detection results, these spreadsheet de-30
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fect detection techniques have their own weaknesses. For the �rst category (type-

based techniques), their inconsistency inference is vague and focuses on a limited

scope, resulting in both low precision and recall results [59]. For the second category

(pattern-based techniques), their relied patterns can be strict and precise for captur-

ing certain features in spreadsheets (thus achieving a high precision, e.g., 71.9% for35

AmCheck and 86.8% for CACheck [20]), but not adaptable to varying styles in dif-

ferent spreadsheets (leading to a compromised recall, e.g., 60.3% for AmCheck and

71.0% for CACheck [20]). For the third category (learning-based techniques), they

have become increasingly popular in recent years due to their adaptive learning abil-

ities. We take CUSTODES [13] for example, as it has ever been considered to be the40

“best automated error �nder” [9]. CUSTODES clusters spreadsheet cells according to

their formula semantics (e.g., by abstract syntax trees), and at the same time restricts

the impact caused by the dissimilarity of defective formulas and varying styles across

spreadsheets by learning their features. By doing so, it largely increases the recall (up

to 80% [13]), but at the same time compromises the precision (down to 65% [13]) when45

clustering irrelevant cells together.

Regarding the weaknesses of these pioneering techniques, we in this work pro-

pose a technique WARDER, based on the success of CUSTODES’s adaptive learning

of varying styles (features) across spreadsheet, but improve over its weakness when

clustering both relevant and irrelevant cells together for spreadsheet defect detection.50

Our key observation is that the cell clustering, if accidentally involving irrelevant

cells, would largely compromise the e�ectiveness of the technique’s later defect de-

tection (e.g., reducing the precision). Therefore, our main e�orts in WARDER focus

on automatically re�ning the cell clustering to make it more robust by �ltering out

irrelevant cells, and enhancing the re�nements with relevance-oriented cell retrieval,55

while preserving CUSTODES’s original adaptive learning ability.

Our targeted re�nements are three-folded: (1) Single-cell validity. When adding

cells into a cluster, WARDER would reject those data cells that can become invalid if

cast to formulas for uni�cation with other cells already in this cluster. For example,

when the data in a cell is replaced by a formula for uni�cation with other formula60

cells in the same cluster, this formula is found to be invalid for calculation (e.g., caus-
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ing a wrong reference or citing a wrong place). Then this new data cell should not be

added into this cluster. (2) Multi-cell validity. WARDER would also reject those data

cells from being added into a cluster if these cells, once added, would violate impor-

tant properties of the cells already existing in this cluster. For example, the references65

of existing cells in a cluster do not overlap each other before adding a new data cell,

but this property would be violated if the cell is added and its contained data is re-

placed by a formula for uni�cation. Then this new cell should also not be added into

this cluster. (3) Whole-cluster validity. Other than cell-level validations, WARDER also

examines the validity for all cells in a cluster as a whole. Since each cluster is formed70

for unifying common computational semantics and identifying few anomalies as de-

fects in spreadsheets, it should be able to �nd a formula uni�able with most cells in

this cluster. Otherwise, the cluster itself is not quali�ed since it lacks the common

computational semantics (denying its original purpose of existence) [20], and should

be canceled to avoid later misbehavior in spreadsheet defect detection.75

With these dedicated re�nements, WARDER aims for better cell clustering by �l-

tering out irrelevant cells, thus improving its e�ectiveness in detecting spreadsheet

defects. With di�erent instantiations of these validity-based re�nements, we propose

two versions of WARDER (WARDER-ori and WARDER-ext, introduced later in Sec-

tion 3). Both of them exhibit clear merits when compared to their predecessor CUS-80

TODES, as well as to other existing spreadsheet defect detection techniques, including

UCheck, Dimension, AmCheck, and CACheck. For example, regarding CUSTODES’s

own benchmark of 291 worksheets (basic units in spreadsheets) selected from the

EUSES corpus [22], WARDER achieved a signi�cant improvement as compared to

CUSTODES. For cell clustering, WARDER boosted over 80% worksheets (80.1% for85

WARDER-ori and 81.6% for WARDER-ext) and 90% clusters (93.2% for WARDER-ori

and 93.9% for WARDER-ext), either by improving the precision or already reach-

ing the upper limit of 100%, with only a small sacri�ce of less than 3% on the av-

erage recall (-2.9% for WARDER-ori and -2.4% for WARDER-ext). For defect detec-

tion, WARDER-ori’s and WARDER-ext’s cell clustering contributed substantially to90

its defect detection by achieving 23.3% and 24.3% precision improvements, respec-

tively, as compared to CUSTODES. Combining the recall, this leads to an increase of F-
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measure on defect detection from 0.71 (for CUSTODES) to 0.79 (for WARDER-ori) and

0.82 (for WARDER-ext). Compared to other spreadsheet defect detection techniques,

WARDER-ori and WARDER-ext also outperformed them on average by a precision of95

88.2% and 89.2% and a recall of 72.0% and 75.4%, respectively, against the precision of

0.5–72.7% and the recall of 0.1–68.7% for other techniques. Besides, regarding an even

larger-scale practical corpus VEnron2 [56], which contains 1,609 versioned groups re-

�ned from original 79,983 worksheets in the Enron corpus [28], both WARDER-ori and

WARDER-ext exhibited their unique superiority over their predecessor CUSTODES,100

improving the defect detection precision by 10.7% and 21.2%, respectively.

In summary, this article makes the following contributions:

• We proposed the WARDER framework, which re�nes CUSTODES’s cell clus-

tering by three validity-based re�nements and a cell retrieval enhancement for

improving the e�ectiveness of spreadsheet defect detection.105

• We realized the WARDER framework into two versions (WARDER-ori and WARDER-

ext) with di�erent instantiations of validity properties.

• We evaluated WARDER-ori and WARDER-ext with both existing benchmark

spreadsheets and a practical large-scale spreadsheet corpus, and compared them

to existing spreadsheet defect detection techniques.110

Compared to its preliminary version (i.e., its conference paper [38]), the work in

this article makes re�nements and extensions to the original WARDER framework. In

particular, WARDER-ext realizes more re�nement instantiations on top of WARDER-

ori along the three validity properties, and adds a validity-oriented cell retrieval en-

hancement into the framework. Besides, the work also enhances the evaluation with115

new experiments for WARDER-ext and new analyses for the cell clustering e�ective-

ness and correlation study.

The remainder of this article is organized as follows. Section 2 introduces neces-

sary background knowledge and terminologies on spreadsheet and its defect detec-

tion. Section 3 presents our WARDER framework with its extensible validity proper-120

ties, and elaborates on its two versions, respectively. Section 4 experimentally evalu-
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ates WARDER with practical spreadsheets and compares it with existing spreadsheet

defect detection techniques. Finally, Section 5 discusses the related work in recent

years, and Section 6 concludes this article.

2. Background125

In this section, we introduce necessary background knowledge on spreadsheet and

its defect detection, as well as key terminologies (e.g., feature) used in the CUSTODES

technique (and also in our WARDER technique).

2.1. Spreadsheet

Spreadsheet. A spreadsheet refers to a stand-alone spreadsheet �le in a �le sys-130

tem. For example, in Microsoft Excel, each opened Excel �le is considered as a spread-

sheet, which is named following the convention like A.xls or B.xlsx.

Worksheet. A worksheet refers to a single sheet page inside a spreadsheet. Nor-

mally, a spreadsheet contains multiple worksheets for di�erent data storage and cal-

culation purposes.135

Cell. A worksheet contains multiple cells, each of which is referred to by a column

number (e.g., A, B, and C) and a row number (e.g., 1, 2, and 3). A cell is the minimal

information piece in a worksheet, which can contain a (numeric) data1 (e.g., 200 or

11.5), formula (e.g., A1 + B2 or SUM(A1, C3)), or text string (e.g., “Fruit” or “----”)

for formatting purposes (e.g., as a table header or delimiter). In the scope of this140

article, we are interested in the former two, as they are also the main focus of many

spreadsheet defect detection techniques. Regarding this, the former two cell types

are also referred to as data cell and formula cell, respectively. Normally, a data cell

contains a numeric data, which typically serves as the input to other formula cells, and

a formula cell contains a formula, which can automatically update its corresponding145

value as calculated from other (data or formula) cells whose values serve as the input

to this formula.

1Some work considers text strings also as data, i.e., their data cells can contain both numbers and text

strings. These slightly di�erent de�nitions would not a�ect our subsequent discussions.
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Reference. References apply only to formula cells. When the data contained in a

data cell serves as the input to a formula cell, we say that this formula cell (or simply

this formula) references this data cell and the latter is referred to as a referenced cell.150

2.2. Defect Detection

As mentioned earlier, spreadsheets can contain various defects in their formula

cells. In the scope of this article, we focus on two major defect types that are dedicat-

edly targeted for each particular worksheet by existing spreadsheet defect detection

techniques. Of course, there are also other defect types, e.g., table clone smells, which155

are detectable across worksheets [18]. Since they do not fall in our focus in this ar-

ticle, also not relevant to WARDER’s comparison over CUSTODES, we do not cover

them here. In the following, we introduce the two major defect types in spreadsheets,

namely, missing formula defect and inconsistent formula defect.

Missing formula defect. This defect occurs when a cell contains a data instead of160

a formula, whose calculation result is supposed equal to this data value. For example,

in a worksheet, suppose that cell C3 was originally de�ned by formula A1 + B2. Due to

some unknown reason, its user overwrote this formula by a plain value 5. It is possible

that this formula happened to have this value equal to its calculation result when the

user conducted the overwriting. Then in this case, this defect became hidden for now,165

but would be triggered later when cell A1 or B2 has its value updated, since this value

of 5 would no longer be automatically updated later.

Inconsistent formula defect. This defect occurs when a cell contains a formula

di�erent from those in its surrounding formula cells, but in fact it should not. For

example, suppose that a column (e.g., C) of cells calculates the sum of its two left170

columns of corresponding cells (e.g., C1 = A1 + B1, C2 = A2 + B2, and so on). One

formula might be mistakenly written as C2 = A2 − B2 or C2 = A2, but this defect

could be hidden if cell B2 happened to contain a value of zero, although it would be

triggered later when cell B2 has its value updated.

Such spreadsheet defects may not immediately trigger any visible error in con-175

cerned data values as explained above. Therefore, some pieces of work consider them

as smells or anomalies [30], depending on their considered severity levels. Neverthe-

7



less, detecting such defects for timely �xing is important, as spreadsheet users are

typically not programming experts and not sensible to such hidden defects, which

can easily grow into catastrophic �nancial losses in the near future.180

2.3. CUSTODES Technique

Our WARDER builds on CUSTODES [13]. The kernel part of CUSTODES is a clus-

tering algorithm, which clusters together those cells of similar computational seman-

tics. CUSTODES decides similarity by the notion of feature. Its considered features

include both key ones (named strong features) and others (weak features). By strong185

features, CUSTODES forms clusters of cells that follow the same computational se-

mantics. By weak features, CUSTODES adjust the formed clusters to allow their cells

to su�er some noises, thus making possible to include defects into clusters for later

detection. While this cluster-forming and -adjusting process will be further explained

later when we integrate CUSTODES into WARDER, we introduce more details about190

strong feature and weak feature below.

Strong feature. CUSTODES considers two strong features in its cell clustering,

namely abstract syntax tree and cell dependency tree, both of which apply to formula

cells. The former models the computational semantics of a formula cell, while the

latter represents how a formula cell depends on its referenced cells. CUSTODES con-195

siders the two features important in deciding whether two formula cells should belong

to the same cluster.

Weak feature. Some cells su�ering missing formula or inconsistent formula de-

fects cannot be clustered successfully if one considers strong features only, since these

cells’ computational semantics are unexpectedly a�ected. CUSTODES adjusts its ini-200

tially formed clusters to allow such cells by considering weak features, whose ex-

amples include cell address (i.e., row/column number), label (i.e., table header), and

layout (e.g., font size and color). The cells that fail in the similarity comparison on

strong features but win in that on weak features could still be clustered. By doing so,

CUSTODES gains opportunities of looking into possible defects in these cells.205
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Figure 1: Work�ow of the WARDER technique.

3. WARDER Technique

In this section, we present our WARDER technique for e�ective spreadsheet defect

detection, in particular focusing on missing formula and inconsistent formula defects.

WARDER aims for re�ning CUSTODES’s cell clustering for better defect detec-

tion e�ectiveness. Based on our previous work [38], we in this article present two210

WARDER versions, namely, WARDER-ori and WARDER-ext. The former is almost

our previous work but with more details, while the latter extends the former with

three re�nements of more instantiations plus a cell retrieval enhancement. Both

WARDER versions follow the same validity-property based framework, whose work-

�ow is shown in Fig. 1.215

In the following, we �rst introduce WARDER’s work�ow and its integration with

CUSTODES. Then we present a motivating example to illustrate CUSTODES’s lim-

itations. After that, we propose WARDER and explain how its three validity-based

re�nements address the analyzed limitations. Finally, we revisit the motivating ex-

ample to conclude WARDER’s e�ectiveness.220

3.1. WARDER Work�ow

As shown in Fig. 1, WARDER, with CUSTODES integrated, follows a four-stage

work�ow to cluster relevant cells in a worksheet together, and then detect defects in
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each formed and re�ned cluster. Among these stages, the third stage (illustrated with

a bold black rectangle) is the main work WARDER additionally conducts over what225

CUSTODES does for re�ning cell clusters for better defect detection.

First, WARDER uses CUSTODES to form an initial set of seed clusters, each of

which contains cells of similar strong features (i.e., abstract syntax trees and cell de-

pendency trees, as discussed earlier). This stage is for each initial cluster to own

common computational semantics.230

Second, WARDER uses CUSTODES to expand each seed cluster by adding remain-

ing cells that were left from the �rst stage, as long as these added cells share similar

weak features (e.g., cell address, label, and layout, as discussed earlier) with those al-

ready in the cluster. This stage is for retrieving back those cells that were left from

seed clusters due to the their contained faulty formulas or varying styles across tables235

in the worksheet.

Third, WARDER re�nes all formed clusters by squeezing out those cells that vio-

late three validity properties (i.e., single-cell, multi-cell, and whole-cluster ones, to be

discussed later) associated with these clusters. In addition, WARDER also retrieves

previously missed relevant cells back into these clusters, according to whether they240

follow the validity properties. This stage is for improving the quality of cell clustering

by examining the validity of involved cells and formed clusters.

Fourth, WARDER uses CUSTODES to classify anomalies in re�ned cell clusters,

and reports them as defects to spreadsheet users. This stage is for detecting defects

(i.e., faulty cells that contain missing formula or inconsistent formula defects) in re-245

�ned cell clusters with common computational semantics.

3.2. Motivating Example

Before we go into details of WARDER’s re�nements for improving CUSTODES’s

cell clustering, we use a motivating example to illustrate CUSTODES’s limitations in

adjusting its initial formed cell clusters. CUSTODES’s original purpose is to retrieve250

those missed relevant cells back into initial clusters in order to improve its recall in

spreadsheet defect detection. However, its retrieval is aggressive in that it could in-

volve quite a few irrelevant cells, which instead impact the precisions of both its cell
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Figure 2: Motivating example - adapted from a worksheet in spreadsheet “VRSinventory01.xls” from the

EUSES corpus, illustrating CUSTODES’s cell clustering and defect detection results (6 clusters marked in

di�erent colors, and 37 defects annotated by red triangle marks)

clustering and defect detection negatively for spreadsheets. The example we discuss

would exhibit how CUSTODES’s e�ectiveness could be compromised.255

This example was adapted from worksheet “Sheet1” in spreadsheet “VRSinven-

tory01.xls” from the EUSES corpus [22], as shown in Fig. 2. For this worksheet, CUS-

TODES formed six cell clusters (marked in di�erent colors) and detected a total of 37

defects (annotated by red triangle marks at top-right corners). Unfortunately, only 4

out of 37 defects (B8, B12, B21, and B23) are true positives (missing formula defects),260

leading to a very low precision of 10.8%. These false positives (33) were caused by

CUSTODES’s aggressive retrieval of irrelevant cells (e.g., C6−7, C10−11, and C14−20

for column C, and corresponding cells for columns D and E) into these clusters due

to their similar weak features.

Our WARDER carefully considers this problem, and proposes to isolate those un-265

quali�ed cells from entering the clusters, while still allowing quali�ed ones in. For this

purpose, WARDER exploits the notion of validity property and conducts validity-based

re�nements, in order to improve the quality of cell clustering for e�ective spreadsheet

defect detection. In the following, we �rst introduce WARDER-ori’s three re�nements

over CUSTODES, and then present WARDER-ext’s additional re�nement instantia-270

tions and a cell retrieval enhancement over WARDER-ori.
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Figure 3: Example 1 - Worksheet “Summary1201” for illustrating WARDER’s single-cell validity re�nement

(one cluster is marked in purple by CUSTODES)

3.3. WARDER’s Re�nements to CUSTODES’s Cell Clustering

In this subsection, we introduce WARDER-ori’s three validity-based re�nements

to CUSTODES’s cell clustering. The introduction is from the perspectives of single-

cell, multi-cell, and whole-cluster properties, respectively. For ease of presentation,275

we refer to WARDER-ori by WARDER directly in this subsection.

3.3.1. Single-cell Validity Re�nement

Our �rst re�nement concerns, when WARDER expands CUSTODES’s initial seed

clusters with additional data cells, whether such cells to add are indeed valid them-

selves. Note that it may be di�cult to tell whether these cells are valid or not directly,280

since they contain plain values only, without any visible relationship with other cells

already existing in the concerned clusters. Nevertheless, since these cells to add and

original cells in a target cluster are to be merged together, they should share common

computational semantics according to the cell cluster’s purpose. Then, these cells to

add should be uni�able by some formula with those original cells. To validate this285

expectation, WARDER would test all formulas previously existing in the original cells

in the cluster, to see whether any of them can �t in these cells to add. Here, “�t” means

that such a formula, once replacing the plain value in a data cell to add, would still

be computable. Otherwise, if all formulas are tested to be failed, e.g., citing a wrong

place or causing a wrong reference, this data cell to add is probably problematic, and290

should be prevented from being added into this cluster, since it itself would become

invalid by uni�cation. This is known as the single-cell validity re�nement.
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Fig. 3 gives one example by worksheet “Summary1201”, in which 25 cells (B11,

B13, B14, B16, D11−17, F11−17, and H11−17) were clustered together (in purple) by

CUSTODES. CUSTODES detected six defects, in which two (F17 and H15) are true295

positives (missing formula defects), and the other four (B11, B13, B14, and B16) are

all false positives. The latter four data cells were retrieved into this cluster due to

their shared weak features (e.g., similar headers and layouts) with the original cells

in the cluster by CUSTODES. However, such retrieval is problematic according to

WARDER’s single-cell validity re�nement. In fact, if any of the four data cells is300

added into the cluster, one has to unify its contained data with a formula uni�able

with other existing cells in this cluster, and this uni�cation would fail. For example,

considering cell B11, the best candidate for its uni�able formula is “=(A11/A$21)*100”,

following the pattern shared by other cells in this cluster. However, this formula is

non-computable, as both A11 and A$21 refer to a text string, which cannot participate305

into any arithmetic calculation. Similar problems occur to cells B13, B14, and B16, too.

Therefore, WARDER would reject such data cells from being added into this cluster,

guarding the precision for spreadsheet cell clustering.

3.3.2. Multi-cell Validity Re�nement

The second re�nement concerns, when WARDER expands initial seed clusters310

with additional data cells, whether the cells to add will not break existing multi-cell

properties of the original cells in a cluster. Consider the references of a cell as an

example, which are an important feature of spreadsheet cells and form the base of

formula calculations. Suppose that the references of the original cells in a cluster never

overlap with each other. Then one would expect that a new data cell to add should315

also not violate this property, when it is added into this cluster and its contained

data is replaced by a formula for uni�cation with those in other cells in this cluster.

This expectation can also be expressed in a reversed way, i.e., references, if already

overlapping with each other for the original cells in a cell cluster, should not encounter

non-overlapping cases for new data cells to add. That is, this property should keep320

consistent for all cells in this cluster, and can be considered as an editing style across

spreadsheet tables, which is also the focus of CUSTODES. Otherwise, the concerned
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Figure 4: Example 2 - Worksheet “Detail for the College of A&S” for illustrating WARDER’s multi-cell

validity re�nement. There is one cluster marked in yellow by CUSTODES, leading to six wrongly reported

defects as annotated with red triangle marks, while these six cells would be �ltered out from the cluster by

WARDER’s multi-cell validity re�nement, and no longer be wrongly reported as defects.

data cell is considered to be problematic, and should be prevented from being added

into this cluster. This is known as the multi-cell validity re�nement.

Fig. 4 gives one example by worksheet “Detail for the College of A&S”, in which325

nine cells (AA8, AB8, AC8, AE8, AF8, AG8, AL8, AM8, and AN8) were clustered to-

gether (in yellow) by CUSTODES. CUSTODES then detected six defects (AA8, AB8,

AE8, AF8, AL8, and AM8) simply due to their contained plain values (missing for-

mula defect), but all of them are false positives. On the other hand, WARDER would

reject adding these six data cells (AA8, AB8, AE8, AF8, AL8, and AM8) into the clus-330

ter, and thus avoid detecting them as defects. In fact, the six data cells do not share

any common computational semantics as the other three formula cells (AC8, AG8,

and AN8). The former data cells refer to some speci�c values, which are directly from

users, while the latter formula cells calculate the sums of several cells left to them.

WARDER distinguishes the former from the latter by its multi-cell validity re�ne-335

ment: the references of the latter three formula cells do not overlap, but this property

would be violated if merging the former six data cells with them together and replac-

ing the data of the former with any formula from the latter cells. For example, when

the data in cell AF8 is replaced by a formula “SUM(AD8:AE8)” by following the pattern

of cell AG8, its references (AD8 and AE8) would overlap with cell AG8’s references340

(AE8 and AF8). Similar problems occur to cells AA8, AB8, AE8, AL8, and AM8, too.

As a result, WARDER would reject such data cells from being added into this cluster.

3.3.3. Whole-cluster Validity Re�nement

The last re�nement concerns the validity of each cell cluster as a whole, i.e., it

focuses on cluster-level rather cell-level validity properties. It is expected that a cell345

cluster should follow common computational semantics in terms of a uni�ed formula
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Figure 5: Example 3 - Worksheet “World 1996” for illustrating WARDER’s whole-cluster validity re�nement

(one cluster is marked in yellow by CUSTODES)

that can cover most cells in this cluster. Here, “cover” means that the formula in a

concerned cell is equivalent to this uni�ed formula, or the data in the cell can also

be obtained by the calculation of this uni�ed formula. WARDER would test all for-

mulas available in this cluster as candidate formulas. If none of them can serve for350

this purpose, it would consider this cluster unquali�ed and choose to cancel it from

further actions, in order to avoid misbehavior (e.g., mistakenly considering most cells

as defects, which turn out to be many false positives) in later defect detection. This is

known as the whole-cluster validity re�nement.

Fig. 5 gives one example by worksheet “World 1996”, in which ten cells were355

clustered together (in yellow) by CUSTODES. From this cluster, CUSTODES detected

seven out of them as defects, but all of them are false positives. In fact, the ten cells

contain almost totally di�erent formulas (�ve patterns), which strongly indicate that

they follow di�erent computational semantics. By its whole-cluster validity re�ne-

ment, WARDER would cancel this cell cluster. Note that WARDER needs a threshold360

value to control the judgment of “covering most cells”. To play safe, WARDER chooses

the threshold to be a conservative value of 50% to protect as many cell clusters as pos-

sible (as a comparison, CACheck [20] chooses a more aggressive value of 70%).

3.4. WARDER’s Further Re�nements and Cell Retrieval Enhancement

In this subsection, we �rst introduce WARDER-ext’s further re�nements by ad-365

ditional instantiations to the three validity properties. We then introduce WARDER-

ext’s cell retrieval enhancement for expanding cell clusters with validity-based quality

guarantees. For ease of presentation, we refer to WARDER-ext by WARDER directly

in this subsection.
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3.4.1. Single-cell Validity Re�nement370

In the single-cell validity re�nement, a non-computable formula can be due to var-

ious reasons. Text strings not being able to participate into arithmetic calculations are

one of them, which is also WARDER’s previous focus. We further extend WARDER’s

scope to include more restrictions. For example, an empty cell can be considered as

one with a pending value to be �lled in in future (currently, it is zero but with some375

intended computational semantics), or one simply for formatting purposes (no value,

i.e., without any computational semantics). WARDER considers the former quali�ed

for participating into formula calculations, but the latter unquali�ed, which can be

judged from whether the concerned cell is associated with any table region (e.g., with

table headers). Then WARDER would reject a data cell from being added into a clus-380

ter, if all the cells’ uni�able formulas have to reference such unquali�ed empty cells.

Empty cells are just one example. Considering spreadsheet users’ diverse tabulating

styles, WARDER collects and examines more content types in cells for the considera-

tion of being quali�ed or unquali�ed for participating into formula calculations. For

example, WARDER also considers cells with special symbols or words such as “#”, “...”,385

“x”, and “NA” [50] as quali�ed (i.e., role of empty cells be to �lled in future).

Fig. 6 gives one example from worksheet “apr02”. Altogether 33 cells (F5−34, C42,

F42, and I42) were clustered together (in green) by CUSTODES. CUSTODES detected

30 defects (F5−34) in this cluster, but all of them are false positives. They were re-

trieved into this cluster due to their shared weak features (e.g., layout) with the origi-390

nal cells in the cluster. However, such retrieval is problematic according to WARDER’s

single-cell validity re�nement. Take cell F34 as an example. If cell F34 is considered

into this cluster, it has to unify its contained data with formula “R35*S35” (the only

candidate formula, following the pattern shared by cells C42, F42, and I42). However,

WARDER considers this formula non-computable, because cell S35 belongs to those395

empty cells considered only for formatting purposes. To see it, cell S35 does not have

a table header above it (in fact, all cells in column S are empty, simply for formatting).

Similar analysis also applies to cells F5−33. As a result, WARDER would reject all

these 30 cells (F5−34) from being added into this cluster.
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Figure 6: Example 4 - Worksheet “apr02” for illustrating WARDER’s extended single-cell validity re�nement

(one cluster is marked in green by CUSTODES; other clusters are not marked for ease of presentation)

3.4.2. Multi-cell Validity Re�nement400

In the multi-cell validity re�nement, the cells in a cluster can have various prop-

erties. While WARDER previously focused on the reference-overlapping property

among multiple cells, we extend WARDER to consider more properties (e.g., cell type

and layout style). Take cell type as an example. WARDER now additionally enforces

the type consistency property for references among multiple cells. Suppose that the405

references of the original cells in a cluster have consistent types for their referenced

cells (e.g., all being formula or data cells). Then one would expect that a new data

cell to add should not violate this property, when it is added into this cluster and its

contained data is replaced by a formula for uni�cation with those in other cells in this

cluster. That is, this formula should have consistent types for its referenced cells as410

those in the existing cells. Otherwise, the concerned data cell should be prevented

from being added into this cluster. Still, considering that a cell cluster can contain

potential defects, this property might be a�ected when some cells in this cluster do
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Figure 7: Example 5 - Worksheet “feeder’ for illustrating WARDER’s extended multi-cell validity re�nement

(one cluster is marked in yellow by CUSTODES; other clusters are not marked for ease of presentation)

not carry their supposed types (e.g., some data cells su�ering missing formula defects

should be formula cells instead). To avoid �ltering out relevant cells accidentally as415

irrelevant cells from a cluster due to such issues, WARDER considers all data cells to

be added as a whole (when their total number is not trivially only one), and refrains

itself from applying this re�nement if over half these data cells would thus be �ltered

out, in order to play safe.

Fig. 7 gives one example by worksheet “feeder”, in which six cells (D34, E34, F34,420

G34, I34, and M34) were clustered together (in yellow) by CUSTODES. A defect (M34)

was detected by CUSTODES, but it is a false positive. We observe that the former �ve

cells (D34, E34, F34, G34, and I34) reference corresponding cells in rows 14 and 32,

respectively, and these referenced cells are all formula cells. When considering cell

M34, if it is added into this cluster, its contained data would be replaced by a formula425

for uni�cation with data in other cells in the cluster. The uni�able formula would be

“M14+M32” (the only candidate formula, following the pattern shared by cells D34,

E34, F34, G34, and I34). However, both M14 and M32 are data cells, inconsistent with

other referenced cells (formula cells) for existing cells in this cluster. This violates

the type consistency property. As a result, WARDER would now reject cell M34 from430

being added into this cluster.

3.4.3. Whole-cluster Validity Re�nement

In the whole-cluster validity re�nement, the cells in a cluster can be formula cells

or data cells, and WARDER previously focused on formula cells only, i.e., it tests the

possibility of unifying formulas in at least 50% formula cells in the cluster. We now435

extend WARDER’s test to data cells as well, i.e., it additionally tests the possibility of

unifying both formulas and data in at least 50% formula and data cells. For any cluster

that fails to pass either test, WARDER would cancel this cluster.
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Figure 8: Example 6 - Worksheet “General Rev 3” for illustrating WARDER’s extended whole-cluster validity

re�nement (one cluster is marked in green by CUSTODES)

Fig. 8 gives one example by worksheet “General Rev 3”, in which altogether 17

cells were clustered together (in green) by CUSTODES. From this cluster, CUSTODES440

detected 15 (all data cells) out of them as defects, but all of them are false positives.

In fact, the 17 cells include two formula ones and 15 data ones. The two formula cells

(I70 and I71) happened to share common computational semantics (both referencing

the cell immediately to its left), and thus WARDER previously would fail to cancel

this cluster (property holding). For extended WARDER, it considers both formula and445

data cells, for testing the possibility of unifying all formulas and data found in these

cells. Then, after replacing the data with formulas of references to their left cells

(following the pattern of I70 and I71), the uni�cation would fail for 9 out of 15 data

cells (i.e., cannot cover these cells). In fact, for the remaining six data cells that have

been covered, �ve of them happen to contain a plain value of zero (the only one that450

is really covered is cell I59). Even if one counts formula and data cells together, the

whole coverage is still less than 50% (property violated). As a result, WARDER would

now cancel this cluster, avoiding numerous false positives detected later.

3.4.4. Cell Retrieval Enhancement

WARDER’s validity-based re�nements improve the quality of cell clusters from455

CUSTODES only by �ltering out irrelevant cells. We further extend it to retrieve back

those relevant cells that fall outside the consideration of CUSTODES. Note that this

can accidentally add back plausible cells as relevant ones, and thus needs to be careful.

Regarding this, WARDER proposes a cell retrieval enhancement based on our earlier
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Figure 9: Example 7 - Worksheet “Sheet1” for illustrating WARDER’s cell retrieval enhancement (one cluster

is marked in green by CUSTODES)

discussed validity properties for quality guarantees.460

WARDER requires that all cell clusters should have passed the aforementioned

single-cell, multi-cell, and whole-cluster validity-based re�nements before their cell

retrieval enhancement. This is for setting up the quality criteria for later cell retrieval

to reference, since these re�nements have �ltered out irrelevant cells from the clus-

ters as many as possible. Then WARDER conducts the cell retrieval by examining465

cells surrounding each cluster in a depth-�rst search manner, and adds them into the

concerned cluster if they satisfy the following conditions:

(1) The cell under consideration should have not been contained in any cluster.

That is, this cell is still free now. This condition guarantees that one cluster will not

steal any cell from other clusters.470

(2) The cell should not violate the aforementioned single-cell and multi-cell valid-

ity properties of the target cluster that is considering retrieving this cell. In addition,

if the cell could be retrieved into this cluster, the cluster’s whole-cluster validity prop-

erties should also not be violated.

(3) The cell should share common computational semantics with the cells already475

in the target cluster. That is, the content contained in this cell can be covered by the

formula that has uni�ed existing cells in the cluster. To avoid coincident equivalence

in the uni�cation judgment, the cell under consideration should not contain trivial

values (e.g., zero) or be uni�able by trivial formulas (e.g., simply referencing another

cell without any calculation).480

With the above three conditions, WARDER aims for maintaining the high qual-

ity of cell clusters, even with added new cells, with the help of previously proposed
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validity-based re�nements. For the illustration of its usefulness, we give one example,

as shown in Fig. 9.

This example is based on worksheet “Sheet1”, in which altogether 23 cells (F115485

and L115−AG115) were clustered together (in green) by CUSTODES (some columns

are hidden for saving space). For this cluster, CUSTODES missed two true defects

(D115 and E115), since they are not in the cluster at all (although immediately adja-

cent). For this case, we observe that CUSTODES’s formed cell clusters could be not

complete in containing relevant cells. Even WARDER’s re�nements to these clus-490

ters only improve their quality by �ltering out irrelevant cells, but can do nothing

with the two left-aside cells. Nevertheless, WARDER’s cell retrieval enhancement

can successfully retrieve the two cells into the concerned cluster, since: (1) both cells

are not contained in any cluster, (2) they do not violate any single-cell, multi-cell, and

whole-cluster validity property associated with the target cluster, and (3) the data con-495

tained in them (128,283 and 64,251) can be uni�ed by formula “+SUM(D9:D114)” and

“+SUM(E9:E114)” (value equivalence), respectively. With the two cells added back,

this cluster becomes both complete (i.e., relevant cells retrieved) and precise (i.e., va-

lidity properties still holding), contributing to later spreadsheet defect detection.

3.5. Motivating Example Revisited500

We revisit our earlier motivating example (Section 3.2) to illustrate how WARDER

improves CUSTODES’s cell clustering and addresses its limitations in this example.

As shown in Fig. 10, WARDER successfully �ltered out 33 irrelevant cells (marked

by the blue cross) from the six clusters formed by CUSTODES, preventing these cells

from being identi�ed as false defects later.505

We take 11 cells (C6−7, C10−11, and C14−20) as an example to explain what

WARDER does. These 11 cells, together with the other four (C9, C13, C22, and C24),

were previously considered in the same cluster by CUSTODES (Fig. 2), which later

caused 11 false defects. WARDER can successfully identify them for �ltering out based

on its validity-based re�nements.510

First, cell C6 violates the single-cell validity and is thus �ltered out. The reason

is that cell C6’s uni�ed formula is “C5/B5” (only candidate), which is, however, non-
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Figure 10: Motivating example revisited - the same worksheet as in Fig. 2, illustrating WARDER’s cell

clustering and defect detection results (6 clusters marked in di�erent colors, and 4 defects annotated by red

triangle marks, with 33 irrelevant cells marked by the blue cross �ltered out from CUSTODES’s clustering

results)

computable, since this formula refers to two text strings (“Responses” and “Total”) for

an impossible arithmetic calculation (division).

Second, nine cells (C10−11 and C14−20) violate the multi-cell validity and are thus515

�ltered out. The reason is that the references of original cells (i.e., C9, C13, C22, and

C24) existing in this cluster do not overlap with each other or other cells, but the

nine cells, if added into this cluster, would violate this property. For example, cell

C10’s uni�ed formula “C9/B9” references cells C9 and B9, causing existing cell C9

overlapped.520

Third, the last cell C7 violates our extended multi-cell validity re�nement and is

also �ltered out. The reason is that cell C7’s uni�ed formula is “C6/B6” (only candi-

date), but both referenced cells (C6 and B6) are data ones. This fact is inconsistent with

that of original cells existing in this cluster, whose referenced cells are one formula

and one data.525

The other 22 irrelevant cells in columns D and E can be similarly prevented from

being added into this cluster. By doing such validity-based re�nements, WARDER

e�ectively improves the quality for CUSTODES’s cell clustering.
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Table 1: Statistics of our experimental subjects

# spreadsheets # worksheets # cells
# formula

cells

# cell

clusters

# defects

(faulty cells)

70 291 189,027 26,716 1,610 1,974

4. Evaluation

In this section, we experimentally evaluate our WARDER technique (both ver-530

sions, WARDER-ori in Section 3.3 and WARDER-ext in Section 3.4), and compare it to

existing spreadsheet defect detection techniques.

We implemented WARDER in Java, and used Apache POI [2] to manipulate spread-

sheets. Integrated with CUSTODES, WARDER contains a total of 9,800 lines of Java

code, with about 5,000 lines are newly added to, or modi�ed from CUSTODES. Work-535

ing as the same style as CUSTODES does, given a spreadsheet for analysis, WARDER

annotates cells in the spreadsheet by means of comments, indicating which cells can

be clustered together with common computational semantics and what defects could

be associated with the commented cells (e.g., missing formula defects or inconsistent

formula defects).540

4.1. Research Questions

In the evaluation, we aim to answer the following three research questions:

• RQ1 (E�ectiveness): How e�ective is WARDER in clustering relevant cells and

detecting defects in the clusters, as compared to existing spreadsheet defect detec-

tion techniques?545

• RQ2 (Correlation): Does WARDER’s improved cell clustering contribute to its

spreadsheet defect detection, in particular, on the detection precision?

• RQ3 (Individual impacts): How doWARDER’s three validity-based re�nements

individually contribute to its e�ectiveness on the spreadsheet defect detection?
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4.2. Experimental Design and Setup550

Subjects. To facilitate WARDER’s comparison with its predecessor CUSTODES,

we �rst selected CUSTODES’s own benchmark as our experimental subjects. The

benchmark was originally sampled from the EUSES corpus [22], and contains 70

spreadsheets and 291 worksheets, as shown in Table 1. The 291 worksheets contain

189,027 cells, among which 26,716 are formula cells. The benchmark also contains555

ground truths to facilitate follow-up research in the spreadsheet �eld. The ground

truths annotate 1,610 cell clusters, which contain 1,974 defects (faulty cells with miss-

ing or inconsistent formula defects), for evaluation purposes.

Techniques. We compared our WARDER (both versions) with the aforemen-

tioned �ve spreadsheet defect detection techniques, namely, UCheck, Dimension, Am-560

Check, CACheck, and CUSTODES (special focus). For comparison purposes, we ob-

tained the �ve techniques’ implementations from their respective authors. We com-

pared WARDER with these �ve techniques on their spreadsheet defect detection ef-

fectiveness. We also additionally compared WARDER’s cell clustering e�ectiveness

with that of CUSTODES (WARDER’s improvement focus).565

To study individual impacts (RQ3) of WARDER’s three validity-based re�nements

on its e�ectiveness, we con�gured WARDER to enable these re�nements individu-

ally in the experiments, which are named WARDER-sc (with only single-cell validity

re�nement enabled), WARDER-mc (with only multi-cell validity re�nement enabled),

and WARDER-wc (with only whole-cluster validity re�nement enabled), respectively.570

Then the base con�guration with all the three validity re�nements enabled is named

WARDER-full or WARDER directly.

Metrics. Regarding the e�ectiveness on spreadsheet defect detection (applicable

to all studied techniques), we �rst measured the number of detects both reported by a

technique and in the ground truths (true positives or TP), that reported but not in the

ground truths (false positives or FP), and that in the ground truths but not reported

(false negatives or FN). Then based on these measurements, we calculated

precisiond =
TP

TP + FP
, recalld =

TP
TP + FN

,
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Table 2: Defect detection results for the seven spreadsheet defect detection techniques/versions

Technique Detected (#) TP (#) FP (#) precisiond recalld F -measured

UCheck 204 1 203 0.5% 0.1% 0.00

Dimension 1,842 14 1,828 0.8% 0.7% 0.01

AmCheck 2,343 1,322 1,021 56.4% 67.0% 0.61

CACheck 1,866 1,356 510 72.7% 68.7% 0.71

CUSTODES 2,380 1,545 835 64.9% 78.3% 0.71

WARDER-ori 1,612 1,421 191 88.2% 72.0% 0.79

WARDER-ext 1,669 1,488 181 89.2% 75.4% 0.82

and

F-measured = 2 · precisiond ·
recalld

precisiond + recalld
,

which is the harmonic mean of precisiond and recalld (subscript “d” represents defect

detection). These three metrics measure the technique’s e�ectiveness on spreadsheet

defect detection.575

Regarding the e�ectiveness on spreadsheet cell clustering (applicable to WARDER

and CUSTODES only), we followed CUSTODES’s pair-wise similarity comparison [13]

to calculate TP (number of pairs of relevant cells clustered together), FP (number of

pairs of irrelevant cells clustered together), and FN (number of pairs of relevant cells

not clustered together). We then calculated a technique’s e�ectiveness on spreadsheet580

cell clustering by precisionc , recallc , and F-measurec in a similar way (subscript of “c”

represents cell clustering).

Environment. All experiments were conducted on a PC Station (ThinkStation)

with an Intelr Xeonr CPU E5 1620 v4 @3.50GHz and 64GB RAM, which was installed

with Microsoft Windows 10 Professional and Oracle Java 8.585

4.3. Experimental Results and Analyses

In the following, we report and analyze the experimental results, and answer the

three research questions in turn.

1) RQ1: E�ectiveness. We �rst evaluate WARDER’s (both versions’) e�ectiveness
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on spreadsheet cell clustering and defect detection, and then compare it to that of the590

other �ve defect detection techniques.

Regarding spreadsheet defect detection, Table 2 2 compares the detection results

for all the seven techniques/versions, which include the precision, recall, and F-measure

values, as well as the statistics of the detected defects and their contained true posi-

tives and false positives. From the table, we observe that: (1) UCheck and Dimension595

obtained only very low scores (less than 1% for both the precision and recall, and

no more than 0.01 for the F-measure) due to their limited analysis scopes, echoing

earlier studies [59]; (2) AmCheck and CACheck obtained much higher scores (56.4–

72.7% for the precision, 67.0–68.7% for the recall, and 0.61–0.71 for the F-measure)

due to their e�ective analysis patterns (e.g., cell arrays); (3) CUSTODES happened600

to obtain an equal score on F-measure as CACheck, but with a focus on the recall

(78.3% against 68.7% for CACheck); (4) WARDER-ori, as expected, focuses on improv-

ing the precision for CUSTODES’s defect detection and obtained a striking improve-

ment from 64.9% to 88.2%, leading to a large jump on the F-measure from 0.71 to 0.79,

by a small sacri�ce on the recall of about 6%, as against its predecessor CUSTODES;605

(5) WARDER-ext exceeded WARDER-ori on both the TP (67 more) and FP (10 less)

measurements, realizing the highest precision of 89.2% among all and a recall bonus

of 3.4% over WARDER-ori (75.4% vs. 72.0%), resulting the highest F-measure of 0.82

among all techniques/versions. In the comparisons, one may concern that CUSTODES

detected more true positives than WARDER (e.g., 124 more than WARDER-ori and 57610

more than WARDER-ext), but these results were accompanied with much more false

positives (e.g., 644 more than WARDER-ori and 654 more than WARDER-ext), which

can be overwhelming for manual inspection.

Regarding spreadsheet cell clustering, Fig. 11 compares the clustering results be-

tween CUSTODES and WARDER-ori, and Fig. 12 compares those between CUSTODES615

and WARDER-ext (as mentioned earlier, clustering comparisons not applicable to

2We note that for fair experimental comparisons, we have (re-)conducted all experiments. There are

some minor changes to the data as presented in the previous work [38], but the changes are slight (caused

by �xing a counting �aw in the data collection), and do not a�ect our subsequent discussions.
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Figure 11: Cell clustering results for CUSTODES and WARDER-ori
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Figure 12: Cell clustering results for CUSTODES and WARDER-ext

other techniques). The comparisons concern both the clustering precision and recall.

We �rst study the clustering precision from the perspective of worksheets. For

this purpose, we partition the 282 worksheets containing at least one cluster out of

the total of 291 ones into four categories (Fig. 11a and Fig. 12a). We observe that: (1)620

WARDER-ori improved the precision for 31 worksheets, and reduced for 7 ones; (2)

The precision kept unchanged for 244 worksheets, in which 195 ones already reached

100% (i.e., upper limit). In other words, WARDER-ori improved the cell clustering

for 226 worksheets (226/282 = 80.1%), either by improving the precision or already

reaching the upper limit of 100%. We further look into details for all 38 worksheets625

with precision changes (Fig. 13a), and observe that WARDER-ori improved the cell

clustering precision by 0.3% to 94.6% (20.7% on average). The improvement gains are

signi�cant, much more than those lost due to few reduced precisions. For a complete

picture, we note that WARDER-ori’s large improvement on the clustering precision
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Figure 14: Worksheet “Detail for College of Education" (one cluster marked in green)

came only with a marginal loss on the clustering recall of 2.9% (from 87.6% to 84.7%,630

in Fig. 11b).

As a comparison, WARDER-ext behaved comparably or better than WARDER-ori

on spreadsheet cell clustering. For example, it improved the cell clustering, either by

improving the precision or already reaching the upper limit of 100%, for 230 work-

sheets (230/282 = 81.6%), which are slightly more than that of WARDER-ori (230 vs.635

226, or 81.6% vs. 80.1%). We also look into details of all 49 worksheets with precision

changes (Fig. 13b), and observe that WARDER-ext improved the clustering precision

by 0.1% to 94.6% (19.1% on average), comparable with that of WARDER-ori. Regard-

ing the clustering recall, WARDER-ext also improved over WARDER-ori by slightly

reducing the latter’s loss against CUSTODES on the recall (-2.4% vs. -2.9%, or 85.2%640

vs. 84.7%).

Both Figs. 13a and 13b disclose an exceptional worksheet “Detail for College of

Education”, for which WARDER’s (both versions) clustering precisions dropped from

100% to zero (against CUSTODES). We further look into this case. The ground truths

suggest that cells {O11, W11, Z11, AD11, AR11} should be clustered together, as marked645

in green (Fig. 14). CUSTODES “correctly” clustered these cells together, but WARDER

did not. However, we found that these �ve cells actually contain di�erent formulas,

and thus violate WARDER’s whole-cluster validity property (there is no common com-

putational semantics shared among most of these cells). This explains why WARDER

rejected this cluster (we conjecture that it could be a clustering �aw in the ground650

truths). In fact, this cell cluster indeed does not contain any defect, as the ground

truths suggest. Therefore, this precision dropping on spreadsheet cell clustering did

not a�ect WARDER’s spreadsheet defect detection at all.

For a more �ne-grained analysis, we then study the clustering precision from the

perspective of clusters themselves, since each worksheet can contain a varying num-655
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reduced: 2
improved: 36

no change (< 100%): 106

no change (= 100%): 1447

(a) Precision comparison for CUSTODES and WARDER-ori

reduced: 7
improved: 47

no change (< 100%): 90

no change (= 100%): 1440

(b) Precision comparison for CUSTODES and WARDER-ext

Figure 15: Cell clustering results for CUSTODES and WARDER in terms of a�ected clusters

ber of clusters and the earlier studied precision associated with a worksheet may not

precisely represent that with each cluster in this worksheet. To align the compar-

isons, the analysis focuses on those cell clusters reported by both CUSTODES and

WARDER, and compare them to those in the ground truths to examine the precision

changes. The number of such cell clusters is 1,591 for the comparison between CUS-660

TODES and WARDER-ori, and 1,584 for that between CUSTODES and WARDER-ext.

Then we partition these clusters into four categories to illustrate the precision changes

(Fig. 15a and Fig. 15b). Considering the e�ectiveness as either increasing the cluster-

ing precision or already reaching the upper limit of 100%, WARDER-ori is e�ective

in improving the cell clustering on 93.2% analyzed clusters (1, 483/1, 591), and this665

percentage is 93.9% for WARDER-ext (1, 487/1, 584). Therefore, both WARDER ver-

sions are e�ective in re�ning cell clustering for a higher quality, with WARDER-ext

behaving slightly better.

In summary, to answer research question RQ1, we conclude that: WARDER is ef-

fective in both spreadsheet cell clustering and defect detection (WARDER-ext has further670

improvement over WARDER-ori); it greatly improved the defect detection precision (by
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Table 3: Correlation study for WARDER against CUSTODES on the precision changes between cell cluster-

ing and defect detection in terms of worksheets (↑: precision improved, ↓: precision reduced,→: precision

unchanged)

Category
∆ precision

(cell clustering)

∆ precision

(defect detection)

#

worksheets

Sum of

each category

Correlation

supported

↑ ↑ 13
115

(82.1%)
↓ ↓ 4

→ → 98

Correlation

unsupported

↑ → 6

16

(11.4%)

↑ ↓ 3

↓ → 4

↓ ↑ 3

Unknown
→ ↑ 8 9

(6.4%)→ ↓ 1

Total - - 140
140

(100.0%)

16.5–88.7%), and achieved the best precision (89.2%) and F-measure (0.82) values among

all studied spreadsheet defect detection techniques.

2) RQ2: Correlation. We then study the correlation between WARDER’s precision

improvement over CUSTODES on spreadsheet cell clustering and that on defect detec-675

tion. Since we in RQ1 have validated both WARDER versions’ e�ectiveness and they

follow the same framework, in the following we conduct experiments with WARDER-

ext for the correlation study. For ease of presentation, we refer to WARDER-ext by

WARDER directly in this part.

We use three symbols ↑, ↓, and→ to represent the precision improved, precision680

reduced, and precision unchanged, respectively. Then, we partition 140 worksheets

containing at least one defect in the ground truths out of the total of 291 ones into three

categories, as shown in Table 3: (1) the “correlation supported” category indicates that

when WARDER has its precision improved, reduced, or unchanged on spreadsheet
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cell clustering as compared to CUSTODES, that on spreadsheet defect detection be-685

haved the same way; (2) the “correlation unsupported” category indicates that when

WARDER has its precision improved on cell clustering, that on defect detection kept

unchanged or was even reduced, or when having its precision reduced on cell clus-

tering, that on defect detection kept unchanged or was even improved; (3) �nally,

the “unknown” category lists the remaining combinations, which neither supports690

nor does not support the correlation. As a whole, we observe that the �rst category

dominates (82.1%), and thus suggests that WARDER’s focused precision improvement

on spreadsheet cell clustering indeed brings about its corresponding improvement on

spreadsheet defect detection.

Fig. 16 shows more details about the precision comparison between WARDER and695

CUSTODES on spreadsheet cell clustering (Fig. 16a) and defect detection (Fig. 16b). To

be focused, we removed those 98 worksheets having their precisions unchanged for

both spreadsheet cell clustering and defect detection, and listed only the remaining

42 ones. One can observe from the �gure detailed precision changes, as well as their

change correlations between cell clustering and defect detection in most cases.700

One may notice one exception for worksheet “CO” (the third bar), where WARDER’s

defect detection precision dropped from 100% to zero, although it improved the cell

clustering precision. We further looked into this case. The ground truths suggest

that cells {B11, E11} (in green) and {C11, F11} (in orange) should form two clusters, as

shown in Fig. 17, and cells C11 and F11 are both defects. CUSTODES detected the two705

defects accidentally by clustering the four cells together. This result is an accident

because the four cells actually do not share any common computational semantics

(the two green cells calculate the largest value, while the two orange cells calculate

the second largest value). CUSTODES considered the two orange cells as defects sim-

ply because they contain plain values only (missing formula defect). On the other710

hand, WARDER clustered {B11, E11} only together and thus did not detect any defect

in them. It missed the two orange cells because they do not contain any formula and

should not form a cluster. Without any additional evidence (e.g., more cells together

and some contain formulas that can unify values in other cells), WARDER played safe

by choosing not to form such clusters (otherwise, more false positives could result).715
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Figure 17: Worksheet “CO” (two clusters marked in green and orange, respectively)

Similarly, besides the worksheet-based analysis for the correlation, we also look

into the cluster-based correlation analysis. The analysis involves 205 cell clusters,

which were reported by both CUSTODES and WARDER, and contain at least one de-

fect both in the ground truths and detected by both techniques (so that the precision

correlation between cell clustering and defect detection can be studied). We parti-720

tion these cell clusters into three categories, as shown in Table. 4, and also observe

that the �rst category (correlation supported) dominates with an even more signif-

icant percentage of 96.6% (vs. 82.1% for the worksheet-based analysis). This result

further validates the close correlation between WARDER’s improvement on spread-

sheet cell clustering and its improvement on spreadsheet defect detection with this725

�ner-grained analysis.

In summary, to answer research question RQ2, we conclude that: WARDER’s im-

proved spreadsheet cell clustering over CUSTODES indeed contributes to its improved

spreadsheet defect detection, and this correlation was supported by 82.1% (worksheet-

based) and 96.6% (cluster-based).730

3) RQ3: Individual impacts. Finally, we study the individual impact of WARDER’s

three validity-based re�nements on its e�ectiveness in detecting spreadsheet defects.

Similarly, we conduct experiments with WARDER-ext for the impact study. For ease

of presentation, we also refer to WARDER-ext by WARDER directly in this part. In the

experiments, WARDER was con�gured with each validity-based re�nement enabled735

only (named WARDER-sc, WARDER-mc, WARDER-wc, as mentioned earlier), and

compared to the full-�edged WARDER (named WARDER-full). Note that WARDER’s

cell retrieval enhancement is also based on its validity properties, and thus can be

accordingly split into its di�erent con�gurations.

Table 5 compares spreadsheet defect detection results for CUSTODES and WARDER’s740
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Table 4: Correlation study for WARDER against CUSTODES on the precision changes between cell clus-

tering and defect detection in terms of clusters (↑: precision improved, ↓: precision reduced,→: precision

unchanged)

Category
∆ precision

(cell clustering)

∆ precision

(defect detection)

#

clusters

Sum of

each category

Correlation

supported

↑ ↑ 4
198

(96.6%)
↓ ↓ 0

→ → 194

Correlation

unsupported

↑ → 1

3

(1.5%)

↑ ↓ 1

↓ → 1

↓ ↑ 0

Unknown
→ ↑ 4 4

(2.0%)→ ↓ 0

Total - - 205
205

(100.0%)

Table 5: Defect detection results for CUSTODES and WARDER con�gured with di�erent validity-based

re�nements

Technique Detected TP FP precisiond recalld F -measured

CUSTODES 2,380 1,545 835 64.9% 78.3% 0.71

WARDER-sc 2,311 1,625 686 70.3% 82.3% 0.76

WARDER-mc 2,271 1,575 696 69.4% 79.8% 0.74

WARDER-wc 1,924 1,532 392 79.6% 77.6% 0.79

WARDER-full 1,669 1,488 181 89.2% 75.4% 0.82
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four con�gurations. We observe that: (1) WARDER’s each validity-based re�nement

is useful, and individually improved the precision for defect detection by 4.5−14.7%

over CUSTODES, with a recall comparable to that of CUSTODES (in the range of

[−0.7,+4.0]), leading to an eventual improvement on the F-measure from 0.71 to

0.74∼0.79; (2) when combining all the three validity-based re�nements together, WARDER-745

full achieved the highest precision (89.2%) and F-measure (0.82), which are also echoed

earlier in Table 1.

In summary, to answer research question RQ3, we conclude that: WARDER’s three

validity-based re�nements are all useful by individually contributing to its e�ectiveness

on spreadsheet defect detection, and achieve the best e�ectiveness when combined to-750

gether.

4.4. Case Study

Besides the preceding controlled experiments, we also evaluate our WARDER’s

e�ectiveness practically in detecting spreadsheet defects using an even larger-scale

corpus VEnron2 [56]. VEnron2 contains 1,609 versioned groups, re�ned from original755

79,983 real-life worksheets in the Enron corpus [28]. We chose the latest spreadsheet

�le from each versioned group, i.e., totally 1,609 spreadsheets, which correspond to

a total of 7,140 worksheets as the subjects of our case study. We fed these work-

sheets to di�erent spreadsheet defect detection techniques/versions to compare their

e�ectiveness on practical spreadsheet defect detection. In the case study, we selected760

two techniques, namely, CUSTODES and WARDER’s both versions (WARDER-ori and

WARDER-ext) for comparisons, since they form an evolving family (WARDER-ext

extends WARDER-ori, and WARDER-ori extends CUSTODES). In order to facilitate

our experimental comparisons and make them fair, we removed some worksheets for

which at least one technique/version failed to run normally (e.g., causing an unex-765

pected crash or exception, or exceeding our controlled time limit of �ve minutes for

handling each individual worksheet, so as to avoid being trapped into dead locks or

unknown errors). This treatment left us a total of 6,478 worksheets for our case study.

One trouble is that VEnron2 does not contain ground truths for evaluating a

spreadsheet defect detection technique’s e�ectiveness (e.g., recall and F-measure can-770
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Table 6: Defect detection results for the three spreadsheet defect detection techniques/versions on VEnron2

(for sampled 449 worksheets)

Technique # defects # TP # FP Precision

CUSTODES 4,568 1,367 3,201 29.9%

WARDER-ori 2,767 1,123 1,644 40.6%

WARDER-ext 2,460 1,257 1,203 51.1%

Table 7: Defect detection results for the three spreadsheet defect detection techniques/versions on VEnron2

(for all 6,478 worksheets)

Technique # reported worksheets # reported defects Time cost (min)

CUSTODES 1,446 16,279 583

WARDER-ori 1,272 10,665 560

WARDER-ext 1,273 10,352 594

not be calculated). Therefore, we focus mainly on the precision comparison for the

three techniques/versions. Considering the large number of all worksheets, although

we could run each technique/version on all these worksheets (e.g., for measuring their

time costs), we had to use worksheet sampling and manual inspection for measuring

the precision. Among all the 6,478 worksheets, 1,498 worksheets were reported to775

contain defects by at least one studied technique/version. Based on them, we ran-

domly sampled 30% (rounded to 449) worksheets from them for manual inspection,

which decided whether each reported defect is a true one or not. Based on the inspec-

tion results, Tables 6 and 7 compare the three techniques/versions for their defect

detection results.780

From Table 6, we observe that: (1) Compared to CUSTODES, WARDER (both ver-

sions) achieved higher spreadsheet defect detection precisions, outperforming CUS-

TODES by 10.7% (for WARDER-ori) and 21.2% (for WARDER-ext), accompanied with

much fewer false positives, which echo WARDER’s focus on improving the precision

over CUSTODES; (2) Among the three techniques/versions, WARDER-ext achieved785

the highest defect detection precision (i.e., 51.1%), indicating its additional bene�ts
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in improving the precision over WARDER-ori (from 40.6% to 51.1%); (3) Although

WARDER-ori and WARDER-ext reported relatively fewer true positives (1,123 and

1,257, respectively), which were accompanied with much fewer false positives (1,644

and 1,203), which are 1,557 and 1,998 fewer than that of CUSTODES (3,201), and this790

feature can be quite useful since all spreadsheet defects have to be manually veri�ed

later in practice.

From Table 7, we observe that, similar to the sampled 449 worksheets, WARDER

(both versions) reported fewer spreadsheet defects (10,665 for WARDER-ori, and 10,352

for WARDER-ext), as compared to 16,279 for CUSTODES. Considering that WARDER-795

ext achieved the highest precision, its report quality is expected to be high (e.g., in

2,460 defects WARDER-ext detected 1,257 true positives, while in 4,568 (about 1.9

times) defects CUSTODES detected only 1,367 true positives (about 1.1 times)). Re-

garding the e�ciency (time cost), we note that WARDER was based on CUSTODES

and improved its spreadsheet cell clustering only (one stage of the total four, as shown800

in Fig. 1). Therefore, WARDER’s time costs were close to that of CUSTODES, e.g.,

560 minutes for WARDER-ori and 594 minutes for WARDER-ext, as compared to 583

minutes for CUSTODES. It is understandable that WARDER-ori cost less time than

CUSTODES, since WARDER-ori �ltered out irrelevant cells and unquali�ed clusters,

thus reducing unnecessary workloads associated with these cells and clusters in later805

stages in the work�ow (Stages 3 and 4, as shown in Fig. 1). Although WARDER-ext

conducted more re�nements, which can further reduce the time cost as WARDER-ori

did, it also conducted cell retrieval enhancement, which on one hand itself cost more

time, and on the other hand added some cells into its clusters and thus increased the

workload for later stages. Still, WARDER’s both versions took comparable time as810

CUSTODES (only 3.9% less and 1.9% more, respectively).

As a conclusion, WARDER is satisfactory in detecting defects for practical spread-

sheets. Both versions (WARDER-ori and WARDER-ext) achieved higher precisions (40.6%

and 51.1%), outperforming CUSTODES by 10.7% and 21.2%, respectively. Their time costs

are comparable to CUSTODES (within the 4% di�erence).815
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4.5. Threat Analyses and Discussions

In the following, we discuss some aspects that may threaten the validity of our

experimental conclusions.

One threat concerns the calculation of spreadsheet cell clustering metrics (i.e.,

precisionc , recallc , and F -measurec ) introduced in Section. 4.2. They are based on820

the TP, FP, and FN measurements calculated from CUSTODES’s pair-wise similar-

ity comparisons [13]. We note that such calculations count the numbers of spread-

sheet cell pairs on whether they belong to the same cluster or di�erent clusters. They

are thus di�erent from those measuring detected spreadsheet defects, since the latter

can be counted naturally one by one. As a result, studying the correlation between825

WARDER’s cell clustering and its spreadsheet defect detection could be a�ected to

some extent. To alleviate this threat, we studied the correlation by both worksheet-

based and cluster-based analyses. We observed that over 80% worksheets and 90%

clusters support our studied correlation, and this suggests that WARDER’s improved

cell clustering indeed generally contributes to its spreadsheet defect defection, as we830

expected earlier.

One may notice that WARDER still has room for improvement, considering that

it failed to detect few spreadsheet defects, as we analyzed earlier. The major reason

is that WARDER has focused on improving spreadsheet cell clustering, by �ltering

out irrelevant cells and unquali�ed clusters, but it itself does not re�ne the anomaly835

detection part, which directly relates to spreadsheet defect detection. As a result,

WARDER would su�er the same problems with the anomaly detection part inherited

from CUSTODES due to the latter’s focused scope. Nevertheless, we observed in ex-

periments that WARDER already outperformed CUSTODES largely, and this suggests

that WARDER has focused on a dominating factor for the e�ectiveness improvement840

on defect detection. Still, the above analysis points out new directions that might

deserve future e�orts.

We note that we attempted but did not manage to compare WARDER to the other

two learning-based techniques, Melford [52] and ExceLint [9] in our experiments. For

the former, we did not �nd its tool available. For the latter, we found its tool but en-845

countered problems in the experiments. First, ExceLint’s scope is very di�erent from
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those of the other seven spreadsheet defect detection techniques/versions studied in

our experiments, in that it focuses on detecting part of inconsistent formula defects

that have been caused by wrong references. Second, ExceLint skips detecting miss-

ing formula defects, since they may not trigger errors immediately. However, all the850

other techniques in our experiments consider such defects harmful and detect them,

since such defects can trigger unexpected errors when the concerned spreadsheets

undergo future maintenance. In fact, missing formula defects are common in practi-

cal spreadsheets (e.g., 79−81% in the VEnron2 corpus by di�erent techniques in our

experiments). Therefore, directly comparing WARDER with ExceLint could be un-855

fair and possibly seriously underestimate ExceLint’s e�ectiveness. Besides, we also

encountered problems when running ExceLint as it lacked a speci�cally-annotated

ground truth as its runtime support. Therefore, we had to leave out its comparison in

our experiments.

Similarly, some other techniques share a di�erent focus as we studied in this arti-860

cle, and thus we did not compare them experimentally. For example, some techniques

focus mainly on spreadsheet smells (e.g., formula smells [30, 31], input smells [16, 15],

inter-worksheet smells [29], and their unions [6, 5]), which concern syntactic issues

like code smells [23] with spreadsheets, which di�er from our focus of missing for-

mula and inconsistent formula defects (essentially semantic issues). This is echoed by865

AmCheck’s [19], CACheck’s [20], and CUSTODES’s [13] analyses in their experimen-

tal designs. Nevertheless, we consider that the two lines of work are both bene�cial

for spreadsheet quality assurance, and can be combined as collaborative assistance to

spreadsheet users.

5. Related Work870

Spreadsheet quality issues are common. Spreadsheets can contain various de-

fects [46, 47, 42, 44], and these defects can cause catastrophic losses to human daily

lives [48, 1, 43]. Galletta et.al [24] conducted an empirical study on spreadsheets,

and reported that even spreadsheet experts cannot signi�cantly outperform novices

in identifying spreadsheet defects. This result suggests that identifying spreadsheet875
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defects can be a non-trivial research problem.

Empirical evidences also support that even simple spreadsheet auditing tools can

be quite useful in practice. For example, Nixon and O’Hara [41] reported a positive

assistance by supporting auditing in spreadsheet maintenance tasks. Later, Ander-

son [7] con�rmed the usefulness of such assistance, but also raised a concern for880

numerous missed spreadsheet defects. To better understand spreadsheet cell rela-

tions and maintain the spreadsheet quality, Mittermeir et al. [14, 40] proposed three

types of “logical areas” for clustering those formula cells that satisfy three forms of

equivalences, namely, copy, logical, and structural equivalences, respectively. Such

clustering can help spreadsheet users better understand conceptual models behind885

spreadsheets, and avoid or inspect defective cells more easily.

Theoretically, each formula cell in a spreadsheet can be regarded as a piece of

software (i.e., an end-user domain-speci�c language based program). Thereby, �nd-

ing errors in formula cells (i.e., defects studied in this work) is a typical software

validation and veri�cation task. On the other hand, the nature of spreadsheet for-890

mulas [47] brings new research opportunities of e�ectively and e�ciently identifying

and diagnosing spreadsheet defects for end users [44].

Spreadsheet defect detection and prediction. The heart of spreadsheet defect

detection and prediction tasks traces back to the idea of metric-based defect predic-

tion [10] (a.k.a., code smell, as introduced by Fowler [23]) and “bugs as deviant be-895

havior” [21]. Both have motivated a series of subsequent software bug-hunting work,

by assuming that: (1) buggy formulas in spreadsheets have their distinctive charac-

teristics, and (2) most formula cells are correct, ill-looking or deviant formulas can be

identi�ed as potential defects.

We have witnessed rapid research developments for better quantitative character-900

ization of spreadsheet formulas by metric-based analyses. UCheck [3, 4] and Dimen-

sion [12] are probably two representative pioneers on this aspect. Based on unit or

dimensional information derived from spreadsheet tables, they veri�ed the correct-

ness of formula calculations by checking whether there exists any illegal combina-

tion of incompatible units. Then, Hermans et al. implemented portable tools to de-905

tect and visualize several types of spreadsheet defects by focusing on inter-worksheet
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smells [29], data clones [32], and formula smells [30, 31]. They are the �rst to adapt the

concept of code smell in conventional programs to the spreadsheet domain. Almost

meanwhile, Cunha et al. extended the category of smells, by focusing on statistical

smells, type smells, content smells, and functional dependencies based smells [16, 15].910

After that, Abreu et al. [6, 5] integrated various categories of spreadsheet smells, and

used a generic spectrum-based strategy to localize defects and improved the local-

ization precision and recall for spreadsheet smells. Recently, Koch et al. [35] further

re�ned some of the existing spreadsheet smells with structural analysis.

Hofer et al. [33], [34] further studied the impact of di�erent similarity coe�cients915

on the accuracy of spectrum-based spreadsheet defect localization. Meanwhile, Am-

Check [19] and its follow-up extension CACheck [20] were proposed to support e�ec-

tive defect detection by focusing on spreadsheet �aws caused by ambiguous compu-

tation semantics based on the notion of cell array. Similarly, Xu et al. [57] proposed to

detect defective empty cells in spreadsheets by analyzing the context of empty cells.920

The WARDER technique, proposed in this work, is similarly based on the adaptive

learning mechanism in CUSTODES [13], using formula-related spreadsheet cell clus-

tering and anomaly-based defect detection. CUSTODES also provided a spreadsheet

benchmark to facilitate follow-up research evaluations. Two follow-up techniques

built on this benchmark are Melford [52] and ExceLint [9]. The former used network-925

based modeling to detect missing formula defects, while the latter used statistical cal-

culations to measure the likelihood of a spreadsheet defect based on the entropy and

layout of its associated references for detecting inconsistent formula (or reference)

defects. Similar inconsistency issues can also raise concerns for general software in

many �elds, e.g., context inconsistency detection for adaptive applications [54], in-930

consistency management for software engineering [53], etc.

Realizing that cell clustering plays a central role in e�ectively identifying spread-

sheet defects, WARDER makes attempts to improve spreadsheet defect detection by

re�ning CUSTODES’s cell clustering based on cell-level and cluster-level validity prop-

erties, as we presented in this article.935

Spreadsheet defect �xing and prevention. Spreadsheet defect detection and

prediction techniques identify anti-patterns or deviations as defect evidences, which
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can also be used as �xing suggestions. For example, besides detecting spreadsheet

smells, CACheck [20] also proposed to automatically repair its detected smells by

synthesizing and recovering intended computational semantics in terms of formulas940

for the concerned cells.

As spreadsheet data and formulas are continually evolving over time, the mainte-

nance of spreadsheets is also an important issue. To better understand the evolution of

spreadsheets, Harutyunyan et al. [27] proposed to automatically identify di�erences

between spreadsheet versions so that maintenance can be more reliably conducted.945

Badame and Dig [8] proposed to obtain di�erent measures on spreadsheet formu-

las, so that these formulas can be better refactored for maintenance tasks. Luckey

et al. [39] attempted to prevent spreadsheet defects by supporting safer spreadsheet

evolution with correctness guarantee.

In WARDER, the formula di�erences between a defective cell and its associated950

cluster can be used as defect �xing or prevention hints. With such hints, search-based

program repairing [55] may be incorporated for synthesizing �xing suggestions.

Other spreadsheet-related research. There are also some pieces of work fo-

cused on other spreadsheet-related research (e.g., understandability, programming

environment, and formula synthesis). For example, Zhang et al. [58] proposed an955

automated approach to improving the expression for nested-IF formulas in spread-

sheets by removing logic redundancy, so that high-level formula semantics can be

more easily identi�ed for end users’ better understanding. Cunha et al. [17] aimed at

helping build a more reliable spreadsheet programming environment.

Finally, program synthesis techniques are becoming increasingly popular in the960

spreadsheet domain, and many pieces of research are increasingly proposed for solv-

ing spreadsheet-speci�c problems, such as automating table transformation [26], string

synthesis [25], and number transformation [51] tasks by a programming-by-example

approach. Essentially, program synthesis is a powerful tool for deducing hidden re-

lations and structures in spreadsheets, e.g., inferring formulas from data. Samuel et965

al. [36] modeled common spreadsheet formulas and relations through predicates and

expressions, and used a two-stage approach to generating and testing spreadsheets

by constraint solving, so that constraints across spreadsheet cells can be synthesized.
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Synthesized formulas can also be used as a reference in a wide variety of spreadsheet

analysis tasks, e.g., providing reduced canonical form of formulas. This could be a970

promising research direction for spreadsheet quality assurance.

6. Conclusion

In this article, we studied the problem of spreadsheet defect detection. We pre-

sented WARDER for re�ning CUSTODES’s cell clustering in order to improve its ef-

fectiveness in detecting spreadsheet defects. WARDER is based on our key observa-975

tions that rely on our identi�ed three validity properties to prevent problematic clus-

ters from being formed, which can involve irrelevant cells and unquali�ed clusters.

These properties concern di�erent levels of cluster validities, from single-cell, multi-

cell, to whole-cluster validities, whose uses e�ectively contribute to the improved

precision of spreadsheet cell clustering and defect detection. In addition, WARDER’s980

validity-based cell retrieval enhancement further strengthens its e�ectiveness. Our

experimental evaluation with a known benchmark and a case study with a large-scale

spreadsheet corpus have con�rmed WARDER’s e�ectiveness in detecting spreadsheet

defects, in particular on the detection precision.

WARDER leaves some opportunities for further improvement with future exten-985

sions. For example, its validity framework is �exible, allowing for further extensions

with more instantiations of validity properties. Besides, currently WARDER focuses

on improving spreadsheet cell clustering, by �ltering out irrelevant cells and unqual-

i�ed clusters, and it can be extended for improving the anomaly detection part by

referring to better algorithms as we discussed earlier. We are working along these990

lines.
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