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Abstract—Software systems assisted with deep neural networks
(DNNs) are gaining increasing popularities. However, one out-
standing problem is to judge whether a given application scenario
suits a DNN model, whose answer highly affects its concerned
system’s performance. Existing work indirectly addressed this
problem by seeking for higher test coverage or generating
adversarial inputs. One pioneering work is SynEva, which exactly
addressed this problem by synthesizing mirror programs for
scenario suitableness evaluation of general machine learning
programs, but fell short in supporting DNN models. In this paper,
we propose VISION to eValuatIng Scenario suItableness fOr DNN
models, specially catered for DNN characteristics. We conducted
experiments on a real-world self-driving dataset Udacity, and
the results show that VISION was effective in evaluating scenario
suitableness for DNN models with an accuracy of 75.6–89.0%
as compared to that of SynEva, 50.0–81.8%. We also explored
different meta-models in VISION, and found out that the decision
tree logic learner meta-model could be the best one for balancing
VISION’s effectiveness and efficiency.

Index Terms—DNN model, mirror synthesis, scenario suitable-
ness evaluation

I. INTRODUCTION

There is an increasing trend of deploying machine learning
(ML) programs with their trained models (e.g., Deep Neural
Network or DNN models) for solving practical problems,
e.g., self-driving [1], medical diagnostics [2], image pro-
cessing [3], and machine translation [4]. Unlike traditional
programs, which can be verified against their specifications,
ML programs are difficult to tell whether their trained models
suit a specific application scenario. It is more challenging for
DNN programs due to lacking an interpretation to their trained
DNN models, which consist of massive neurons. As a result, a
DNN program can cause abnormal behaviors or even disasters
due to its low accuracy if deployed to an application scenario
unsuitable for its trained model. For example, according to a
survey on 5,328 disengagements of autonomous vehicles [5],
as high as 64% cases were found to be buggy in ML systems
(mostly DNN-based), among which the low accuracy of image
classification was the dominant cause.

The above problem relates to the evaluation on the suitable-
ness of a trained DNN model against an application scenario.
Traditional practices for testing trained DNN models rely on
manual labeling and inspection [6], [7], which is very time-
and effort-consuming, infeasible in practice. Some recent work
transformed this problem into a test adequacy one by measur-
ing structural test coverage criteria [8], [9], [10], but a model

with higher coverage does not imply more suitableness [11].
Some other work tried to diagnose a DNN model by generating
adversarial inputs that can cause the model to predict wrongly,
by means of metamorphic testing [12], [13], differential test-
ing [8], [14] or distance measurement [15], [16], but these
attempts did not directly answer the suitableness question.

One pioneering work, SynEva [17], proposed to evaluate
the suitableness of a trained ML model against a given
application scenario. It constructs a mirror model from the
original model, which guarantees to behave similarly as the
original model for a scenario that is sufficiently similar to
the training one from which the model is instantiated, but
could behave differently from the original model for a scenario
that deviates significantly from the training one. By doing so,
SynEva distinguishes these two types of scenarios.

SynEva works well, and is not restricted to certain ML
algorithms (even applicable to the k-means algorithm [18],
which was not originally for classification). However, SynEva
has never been explicitly applied to DNN models and its ef-
fectiveness is unclear. As such, we investigated its application
to DNN models and identified the following problems due
to its inherent limitations: (1) a trained DNN model usually
consists of massive neurons, which can cause SynEva to be
overwhelmed by huge time and space overheads since it has
to construct logic learners for all neurons in mirroring (e.g.,
a 10-layer CNN’s mirroring time can easily last for months);
(2) SynEva’s performance could also be restricted due to its
support vector machine (SVM) choice as the only logic learner
(e.g., only 50.0% accuracy in the worst case); (3) SynEva relies
essentially on control flows in its synthesized mirror model,
but DNN models work in a data-flow way [19], so that its
inherent path-based similarity measurement cannot effectively
distinguish different scenarios.

In this paper, we propose VISION for eValuatIng Scenario
suItableness fOr DNN models. It follows SynEva’s key mirror
synthesis idea but carefully addresses the aforementioned lim-
itations. In general, VISION consists of three working phases,
namely, model preparation (traditional training), mirror syn-
thesis, and suitableness measurement, the latter two of which
are VISION’s main parts and together address the analyzed
three problems. First, only neurons from partial layers (e.g.,
fully connected layers) are considered in VISION for logging
concise information and synthesizing logic learners in the
mirroring, and this treatment addresses the overhead problem.



Second, VISION integrates multiple selections of logic learner
meta-model (including three linear and three non-linear ones),
and this treatment makes VISION customizable and addresses
the choice problem. Third, instead of relying on control flows,
VISION works in a data flow way by taking neurons’ output
values into consideration for synthesizing mirror models and
measuring their suitableness based on distances, and this
treatment addresses the flow problem.

We experimentally evaluated our VISION on a practical self-
driving dataset released by Udacity [20] with DNN model
DAVE-2 [1]. The experimental results show that when both
integrated with the SVM logic learner meta-model, VISION
was effective in distinguishing suitable and unsuitable applica-
tion scenarios with an accuracy of 75.6–89.0% (mean: 82.3%),
while SynEva behaved with an accuracy of 50.0–81.8% (mean:
69.8%). We also tested VISION with different logic learner
meta-models, and observed that its effectiveness varied and
when integrated with the k-nearest neighbors meta-model it
achieved the best accuracy of 88.0–93.8% (mean: 91.1%).
Besides, we measured VISION’s time and space overheads,
and observed that the overheads varied with different logic
learner meta-models, and the decision tree one was the most
preferred that best balanced the effectiveness and efficiency.

The key contributions of this paper are as follows:
• Proposal of the VISION approach to automatically eval-

uating scenario suitableness for DNN models.
• Evaluation of VISION on a real-world dataset, whose

results confirmed its effectiveness (accuracy) in practice.
• Measurement of time and space overheads of VISION for

suggestions in its practical usage.
The rest of this paper is organized as follows. Section II

introduces the DNN background. Section III gives VISION’s
overview and elaborates on its main working phases. Section
IV experimentally evaluates VISION’s performance and com-
pares it to existing work. Section V presents related work in
recent years, and finally Section VI concludes this paper.

II. BACKGROUND

DNN, as one type of Artificial Neural Network (ANN), is
composed of neurons, following the M-P Neuron Model, as
shown in Fig. 1(a). In this model, a neuron receives multiple
inputs from n other neurons, which are transmitted through
weighted connections. The total input value

∑n
i=1 wixi re-

ceived by the neuron is combined with a threshold value b
associated with this neuron, and then processed by a sum-
mation function

∑n
i=1 wixi − b and activation function ϕ to

produce the output of the neuron, i.e., y = ϕ(
∑n

i=1 wixi− b).
When multiple neurons are connected in a hierarchy, a neural
network is formed. In general, a neural network can be
considered as a mathematical model with lots of parameters,
which aggregates effects of its nested functions.

To be specific, a DNN consists of an input layer and an
output layer, as well as multiple hidden layers in between,
as shown in Fig. 1(b). Hidden layers progressively extract
higher-level features from raw inputs to discover distributed
feature representations of input data. A conventional DNN is

(a) M-P neuron model [21] (b) Basic architecture of a DNN [22]

Fig. 1. M-P neuron model and DNN architecture.

typically fully connected, i.e., neurons of two adjacent layers
are fully connected to each other. More diverse DNN structures
have also been proposed for solving specific problems. For
example, Convolutional Neural Network (CNN) is a wide-used
DNN architecture, which has brought about breakthroughs in
processing images, speeches, and videos. The hidden layers
of a CNN typically consist of a series of convolutional layers,
pooling layers, and fully connected layers. A neuron in a
convlutional layer connects only to partial neurons in its
last layer, and its computational process can be represented
as a convolution with kernels. Pooling layers are usually
responsible for dimension reduction.

III. APPROACH

In this section, we elaborate on our VISION approach,
and explain how it evaluates scenario suitableness for DNN
models, while addressing SynEva’s limitations.

A. Overview

Fig. 2 gives VISION’s overview, which consists of three
working phases. Phase 1 (model preparation) trains a DNN
model based on training instances from a given training
scenario according to some pre-selected deep learning (DL)
algorithm, and refers to this trained model by the knowledge
model (or knowledge). Then, Phase 2 (mirror synthesis) syn-
thesizes a mirror model (or mirror) that behaves similarly to
the knowledge model upon training instances, by replacing
the logics of the neurons in the knowledge model with
newly trained logic learners. Finally, Phase 3 (suitableness
measurement) measures the behavioral differences (BD) for
instances in a given new scenario to evaluate whether the
knowledge and mirror models still behave similarly to each
other, and thus decides whether the tested instances or the
whole scenario (all instances) suit(s) the knowledge model (or
the previously DNN model), according to VISION’s internal
adaptive BD threshold learner.

Among the three phases, Phase 1 is the traditional DNN
training. Therefore, we further elaborate on mirror synthesis
and suitableness measurement in the following.

B. Mirror Synthesis

In this phase, VISION synthesizes a mirror model M that
behaves similarly in the prediction on the training scenario
with the trained knowledge model K in Phase 1, and uses the
difference between the two models (knowledge and mirror) as



Fig. 2. VISION Overview

the pseudo-oracle in Phase 3 to distinguish suitable (when K
and M behave similarly) and unsuitable (otherwise) scenarios.

For synthesizing such a mirror model, VISION follows
SynEva’s idea of replicating the whole structure of the knowl-
edge model K to the mirror model M , but replacing M ’s
neuron logics with newly trained logic learners. To be specific,
VISION conducts the following two steps: (1) synthesizing M
by a DNN-style model with the same structure as K (including
its neuron layers, neuron number of each layer, weight values,
and bias values); (2) constructing M ’s neuron logics by new
logic learners, which make M behave similarly with K on the
original training scenario. The first step is straightforward by
structure copying, but the second step is more complicated. For
replacing M ’s neuron logics, which neurons to be replaced for
new logics (the which problem) and how to replace these logics
with new learners should be answered (the how problem), and
we explain them below.

For the which problem, considering SynEva’s overhead
problem about coping with massive neurons in a DNN model,
VISION selects only neurons from fully connected (FC) layers
for their logic replacement. The reason is that FC layers tend to
inherit more functional mechanisms [23], while other layers
like convolutional or pooling ones tend to extract or reduce
dimensional features. This treatment can realize a better trade-
off for balancing the effectiveness and efficiency.

For the how problem, VISION considers to train a new
logic learner for each selected neuron based on necessary
logged information (including each neuron’s input matrix and
summation value), so as to simulate the mirror model M ’s
behavior as the knowledge model K does. To be specific,
VISION feeds all training instances from the training scenario
into knowledge K and logs relevant information for the
selected neurons. VISION then uses the logged information to
train new logic learners as regressors by a selected regression
meta-model algorithm, i.e., taking neuron inputs as features,
and its summation values as labels. In this way, each neuron
is associated with a learner that is responsible for this neuron
to generate the output of its summation function. Then this
neuron’s activation function generates its follow-up output

value as knowledge K does.
Recall that SynEva has a similar logic learner training

process. It trains each learner as a classifier by the SVM
classification algorithm to decide whether to activate one or
more follow-up edges as its output in the synthesized mirror
model, assuming that its model execution in the prediction
mostly works in a control-flow way. However, DNN models
essentially work in a data-flow way in the prediction pro-
cess [19]. As such, the output values of each neuron are
valuable for simulating knowledge K’s behavior, neglecting
which would lead to poor performance when SynEva is applied
to DNN models. Regarding this, VISION trains each learner to
be a regressor as aforementioned (addressing SynEva’s flow
problem). Moreover, to cope with SynEva’s choice problem
about its only SVM meta-model choice, VISION extends to
integrate more logic learner meta-models to be customizable.
VISION considers six common regression algorithms for meta-
model choices, including three linear ones: ridge regression
(Ridge), least squares regression (LinearRegression) and linear
support vector regression (LinearSVR), and three non-linear
ones: support vector regression (SVR), decision tree regression
(DT) and k-nearest neighbors regression (KNN).

Formally, the logic learner training process for mirror
synthesis phase is presented in Algorithm 1. Suppose that
there are k FC layers in knowledge K VISION considers in
mirroring, and the ith layer (1 to k) has ti neurons. Suppose
that the training scenario contains m instances. Let the jth

neuron at the ith layer have weight wij (ti−1-dimensional
vector) and bias bij . Then, for any neuron at the ith layer,
it receives inputs from ti−1 neurons at its last layer, and the
m instances’ inputs together form the input matrix Xi (size
of m × ti−1). Next, the outputs of summation function yij

are calculated from corresponding weight and bias values at
Line 3, where e is a m-dimensional vector with all ones.
Based on a specific selected meta-model, a logic learner is
initialized (Line 4) and trained for all instances’ inputs in
the matrix (Line 5) by feeding them as the training data
(Xi as its training features, and yij as its label). Eventually,
well-trained logic learners for all concerned neurons based on



Algorithm 1 Logic Learner Training for Mirror Synthesizing
Input: input matrix Xi for each selected layer (i = 1, 2, ..., k) in

K;
Input: weight wij and bias bij for the jth neuron at the ith layer

(j = 1, 2, ..., ti);
Output: set of logic learner models L.
1: for i = 1, 2, ..., k do # traverse each FC layer
2: for j = 1, 2, ..., ti do # traverse each neuron of the layer
3: yij := Xiwij − bij · e
4: lij := meta model() # initialize a selected meta-model
5: lij .fit(Xi,yij)
6: L.append(lij)
7: end for
8: end for
9: return L

logged information of training instances are returned (Line 9).
By replacing concerned neurons in mirror M with new logic
learners, VISION obtains its expected mirror model M .

C. Suitableness Measurement

Based on obtained mirror M , VISION in this phase evaluates
its corresponding knowledge K’s suitableness with respect to
a given application scenario.

VISION uses behavioral differences between mirror M and
knowledge K on a given application scenario to measure K’s
suitableness with respect to this scenario. This is based on
the following insight: (1) if knowledge K extracted from the
training scenario suits a new scenario, then both knowledge K
and mirror M should behave similarly for the new scenario,
since the training and new scenarios belong to the same
type; (2) if knowledge K does not suit the new scenario,
then knowledge K and mirror M should behave differently
for the new scenario, since they agree only on the training
scenario according to our model synthesis, not guaranteeing
any performance for other different scenarios, and thus the
likelihood that they behave coincidently similarly is low.

To measure such similarity, VISION models the behavior of
a DNN model (knowledge K or mirror M ) on predicting for a
specific instance by intermediate outputs of concerned neurons
in this model, i.e., a vector including all N concerned neurons’
outputs in the form of k = 〈k1, k2, ..., kN 〉. Then, based
on this vector (named behavior vector), VISION measures
the behavioral differences (BD score) between K and M by
some distance function, e.g., traditional Euclidean distance.
Let K’s and M ’s behavior vectors on instance I be kI

and mI . Then the BD score can be calculated by formula
BDI :=

√
(kI −mI)(kI −mI)>. Note that this treatment

also addresses SynEva’s flow problem, since SynEva measures
the behavioral similarity via control-flow-alike paths of K and
M , which can be tough to determine in DNN models.

Algorithm 2 calculates the BD score to evaluate the sce-
nario suitableness for a given DNN model (knowledge K,
accompanied with its corresponding mirror M ). In practice,
a BD score needs a threshold (suitableness threshold) for
determining whether the score indicates “suitable” or “un-
suitable”, which is essentially application-specific. To address
this trouble, VISION considers that a proper threshold should

Algorithm 2 Suitableness Measurement of A Scenario
Input: one scenario S = {I1, I2, ..., In} and its corresponding

behavior vectors of K and M : k1,k2, ...,kn; m1,m2, ...,mn;
Output: suitability analysis of instances in S.
1: for i = 1, 2, ..., n do # traverse each instance in S
2: BDi :=

√
(ki −mi)(ki −mi)> # Euclidean distance

3: if BDi > θ then
4: Ii is unsuitable
5: else
6: Ii is suitable
7: end if
8: end for

be around the upper bound of all possible BD scores for
the training scenario, assuming that all instances from this
scenario should be probably suitable. Therefore, we suggest
to apply VISION to the training scenario first (i.e., calculating
BD scores for knowledge K and mirror M ), and VISION
then uses this distribution of these calculated BD scores to
decide the suitableness threshold value adaptively. Specifically,
VISION refers to the definition of upper bound in drawing
boxplots [24] to alleviate the disturbance of data outliers
(named BDup), and then decides the threshold: θ = p×BDup

(p is a controllable parameter whose value is around one).
VISION then uses θ to distinguish suitable and unsuitable

instances from application scenarios (Line 3-6). One can also
evaluate suitableness for an application scenario by consid-
ering relative percentages between suitable and unsuitable
instances from this scenario. A final question relates to the
setting of the p value, which to some extent reflects the
fitting degree between the selected logic learner meta-model
in VISION and the training data from the training scenario.
Generally, more overfitting the selected meta-model is, the
larger p should be. Since VISION integrates several meta-
models (owning different generalization abilities), their corre-
sponding p values can vary. We suggest a range of [0.6, 3.0] for
the p value, which shows satisfactory effectiveness (accuracy
of 76.4%–91.1%) in distinguishing suitable and unsuitable
application scenarios in our later evaluation.

IV. EVALUATION

A. Research Questions

We answer the following three research questions:
• RQ1: How effective is VISION in evaluating the suitable-

ness of a trained DNN model against a given application
scenario, as compared to SynEva?

• RQ2: How do different suitableness threshold values
and logic learner meta-model choices affect VISION’s
effectiveness?

• RQ3: What are VISION’s time and space overheads?

B. Implementation

We implemented VISION in Python and its trained DNN
models on Keras 2.2.4 [25] with Tensorflow 1.10.0 back-
end [26]. All DNN models were serialized and stored in
the .h5 file format for ease of usage. Based on the Keras
interface, one can obtain intermediate information like weight,
bias, and activation output values from certain neurons in a



DNN model for use by VISION. For VISION’s mirror model
synthesis, its integrated logic learners were trained by Scikit-
learn 0.19.1 [27], and the obtained models were also serialized
and stored in the .pkl file format. For the efficiency concern,
VISION trained logic learners in parallel.

For fair comparisons, we re-implemented SynEva also in
Python and on Keras 2.2.4. Its integrated SVM logic learners
were similarly serialized. To apply SynEva to DNN models,
we conceptually mapped SynEva’s control-flow-alike paths
in the execution to a DNN model’s activation paths in the
prediction as suggested by DeepXplore [8].

C. Experimental Setup

Dataset. We selected a real-world self-driving dataset re-
leased by Udacity [20]. It contains images captured every
0.05 seconds by three cameras behind the windshield of a
driving car, and simultaneous steering wheel angles applied by
a human driver for each image. In total, the dataset has 107,010
samples, which are grouped by six sub-datasets. To facilitate
experimental comparisons for different application scenarios,
we partitioned these images captured by the central camera
into four scenarios according to light conditions, namely, clear,
dark, shadow, and sunlight, and resized them to 100*100.
Fig. 3 gives four examples, respectively. After removing really
fuzzy samples (cannot be clearly classified even by humans),
we obtained a total of 26,518 samples for experiments, as
detailed in Table I. For these examples, we randomly divided
them into a training set and a test set with a ratio of 9:1
for each scenario. Considering that the raw test sets were
unbalanced for different scenarios, we rebalanced them for
the same number of samples by random selection.

DNN models. We conducted experiments on DAVE-2, a
widely-used end-to-end learning CNN architecture for predict-
ing steering angles for self-driving cars from Nvidia [1], which
includes five convolutional layers and five fully connected (FC)
layers. We used the training sets from the four aforementioned
scenarios to train and obtained four DNN models, namely,
clear-model, dark-model, shadow-model, and sunlight-model.

(a) clear (b) dark (c) shadow (d) sunlight

Fig. 3. Four example scenarios.

TABLE I
SIZES OF THE DATASETS AFTER PARTITION

Scenario Total
size

Training
set

Test set
(unbalanced)

Test set
(balanced)

clear 16,703 15,033 1,670 194
dark 4,353 3,918 435 194

shadow 3,514 3,163 351 194
sunlight 1,948 1,754 194 194

Total 26,518 23,868 2,650 776

TABLE II
ACCURACY COMPARISONS BETWEEN SYNEVA AND VISION

Approach Trained
DNN model

Actual
label *

Predicted
label + Accuracy Average

accuracyUS S

SynEva

clear-
model

US 255 327 50.0%

69.8%

S 61 133
dark-
model

US 528 54 81.8%S 87 107
shadow-
model

US 460 122 71.0%S 103 91
sunlight-

model
US 580 2 76.5%S 180 14

VISION

clear-
model

US 472 110 77.8%

82.3%

S 62 132
dark-
model

US 521 61 86.9%S 41 153
shadow-
model

US 492 90 75.6%S 99 95
sunlight-

model
US 535 47 89.0%S 38 156

* Oracle of instances. S refers to suitable (i.e., instances from the same
scenario) and US refers to unsuitable (i.e., otherwise).

+ Classification results predicted by SynEva and VISION.

D. Configuration

All experiments were conducted on a commodity PC with
a four-core Intel(R) Core(TM) i7-6600 @2.60GHz CPU with
8GB RAM and a NVIDIA GeForce 930M GPU with 8GB
RAM. The PC was installed with Microsoft Windows 10
Professional and Python 3.6.

E. Experimental Results and Analyses

In the following, we report and analyze experimental results,
and answer the preceding three research questions in turn.

RQ1. We compare VISION and its predecessor SynEva
in evaluating the suitableness of a DNN model against an
application scenario. The comparisons were conducted on the
four aforementioned trained DNN models, which were tested
against each of the four testing scenarios (i.e., instances from
the test sets in Table I), respectively, for comparing VISION’s
and SynEva’s accuracies in the suitableness evaluation. The
accuracy was calculated as the number of correct predictions
(suitable or unsuitable) against all predictions. For comparing
their potentials, we set the two approaches’ parameters to their
most proper values that can lead to the best effectiveness: (1)
0.80 for p in VISION and 0.70 for the similarity threshold
in SynEva, and (2) SVR in VISION and SVM in SynEva
(essentially SVR and SVM are the same algorithm). Note that
since SynEva’s original design did not work for all neurons
(mirroring would take more than nine months roughly, and this
suggests that our refinement for SynEva’s overhead problem
is indeed necessary), we made it choose neurons only from
FC layers, similar to VISION, for the comparison purpose.

Table II lists the comparison results for each model (sum-
ming up all predictions from the four testing scenarios). We
observe that: (1) SynEva’s suitableness evaluation is unsta-
ble, with an accuracy ranging from 50.0% to 81.8% (mean:
69.8%); (2) VISION’s suitableness evaluation is much more
stable, ranging from 75.6% to 89.0% (mean: 82.3%); (3) in
general, VISION outperformed SynEva by 12.5%, and the



clear-model dark-model shadow-model sunlight-model
(a) SynEva

clear-model dark-model shadow-model sunlight-model
(b) VISION

Fig. 4. Similarity and BD score distributions for the four DNN models, respectively (the training sets were sampled for the same data size as other test sets).

superiority was consistent (all positive) for all the four DNN
models, namely, by 27.8%, 5.1%, 4.6%, and 12.5%.

To study VISION’s superiority over SynEva, we looked into
the distributions of their reported suitableness scores (i.e., BD
scores in VISION and similarity scores in SynEva). Fig. 4
shows their score distributions. From the figure, we observe
that VISION’s BD scores clearly contributed to distinguishing
suitable and unsuitable instances (i.e., disclosing that the
instances in a test set was from the same or a different
scenario, as compared to its corresponding training set), while
for SynEva, its distinguishing ability was much weaker. This
explains VISION’s overall superiority in the suitableness eval-
uation over SynEva for all DNN models, and indicates that
our treatment for SynEva’s flow problem is effective.

Fig. 5 gives two illustrative examples reported by VISION,
as one with the maximal BD score (most unsuitable) and one
with the minimal BD score (most suitable) for the clear-model.
One can easily observe that the second is under the clear
weather condition, while the first is indeed far from clear.

Therefore, we answer RQ1 as follows: VISION was effective
in evaluating a DNN model’s suitableness for an application
scenario, with an average accuracy of 82.3% (up to 89.0%),
as compared to SynEva’s 69.8%.

RQ2. We next study the impact of different suitableness
threshold values and logic learner meta-model choices on VI-
SION’s effectiveness. First, take the clear-model for example.
We set VISION’s logic learner meta-model to be DT and varied
its p value in the [0.6, 3.0] range, as mentioned earlier.

Fig. 6 illustrates how the p value impacted VISION’s effec-
tiveness (average accuracy). Roughly, the accuracy increased
and then decreased, but within a small range. Although such
fluctuation exists, the accuracy was mostly above 75% (more
than 91% cases), which is generally fine. For other DNN
models, the results were more or less the same.

Then we explore how different logic learner meta-model

(a) Maximal (b) Minimal
Fig. 5. Examples with maximal/minimal BD scores against the clear-model

Fig. 6. Impact of different p values on VISION’s average accuracy (with the
DT meta-model and for the clear-model)

choices impact VISION’s effectiveness. We focus on their
respective best effectiveness within possible p values. Ta-
ble III lists the comparison results among the six meta-models.
We observe that: (1) VISION’s best average accuracy varied
from 76.4% to 91.1%; (2) among all the six meta-models,
KNN achieved the highest best average accuracy of 91.1%,
being 88.0–93.8% for the four DNN models, respectively;
(3) non-linear meta-models (SVR, DT, and KNN) brought
a higher best average accuracy, i.e., 82.3–91.1%, than linear
meta-models (Ridge, LinearRegression, and LinearSVR), i.e.,
76.4–79.5%. The last observation may be because inherent
summation functions in DNN models are linear, and non-linear
meta-models can generate learners with better generalization
abilities, which can hardly behave coincidently similarly as the
original DNN model when predicting new scenarios different
from the training scenario.

Therefore, we answer RQ2 as follows: Both suitableness
threshold values and logic learner meta-model choices im-
pacted VISION’s (best) effectiveness but not largely, and non-
linear meta-models (especially KNN) brought higher accura-



TABLE III
IMPACT OF DIFFERENT LOGIC LEARNER META-MODEL CHOICES

Meta-model
Trained

DNN
model

Actual
label

Predicted
label

Accuracy Average
accuracyUS S

Ridge
(p = 0.68)

clear-
model

US 447 135 76.0%

78.6%

S 51 143
dark-
model

US 573 9 88.3%S 82 112
shadow-
model

US 571 11 75.3%S 181 13
sunlight-

model
US 582 0 75.0%S 194 0

LinearReg-
ression

(p = 0.78)

clear-
model

US 452 130 77.7%

79.5%

S 43 151
dark-
model

US 570 12 88.9%S 74 120
shadow-
model

US 528 54 76.5%S 128 66
sunlight-

model
US 582 0 75.0%S 194 0

LinearSVR
(p = 0.62)

clear-
model

US 409 173 67.8%

76.4%

S 77 117
dark-
model

US 569 13 87.0%S 88 106
shadow-
model

US 546 36 75.6%S 153 41
sunlight-

model
US 582 0 75.0%S 194 0

SVR
(p = 0.80)

clear-
model

US 472 110 77.8%

82.3%

S 62 132
dark-
model

US 521 61 86.9%S 41 153
shadow-
model

US 492 90 75.6%S 99 95
sunlight-

model
US 535 47 89.0%S 38 156

DT
(p = 2.30)

clear-
model

US 557 25 87.2%

84.1%

S 74 120
dark-
model

US 533 49 83.5%S 79 115
shadow-
model

US 494 88 78.6%S 78 116
sunlight-

model
US 565 17 87.0%S 84 110

KNN
(p = 0.85)

clear-
model

US 572 10 92.8%

91.1%

S 46 148
dark-
model

US 540 42 90.0%S 36 158
shadow-
model

US 524 58 88.0%S 35 159
sunlight-

model
US 563 19 93.8%S 29 165

cies (82.3–91.1%) than linear ones (76.4–79.5%).

RQ3. Finally we study VISION’s time and space overheads.
We measured both the time for synthesizing mirrors (Phase
2 in Fig. 2) from DNN models, and that for suitableness
evaluation (Phase 3 in Fig. 2). Besides, we measured the disk
space consumed by synthesized mirrors with logic learners.
Due to the space limit, we report results only for the dark-
model (from 4,353 training instances) and sunlight testing
scenario (with 194 instances) in Table IV (the second largest
dataset). We observe that: (1) linear meta-models (Ridge,
LinearRegression, and LinearSVR) consumed much less space
(<16MB) than non-linear ones (SVR, DT, and KNN), where
the KNN meta-model consumed the most space (94.4 GB); (2)

TABLE IV
VISION’S TIME AND SPACE OVERHEADS

Meta-model of
Logic leaners

Synthesis time
(min)

Evaluation
time (min)

Consumed
space

Ridge 4.13 0.04 8.3 MB
LinearRegression 48.45 0.05 15.8 MB

LinearSVR 35.82 0.07 16.0 MB
SVR 64.47 3.28 10.0 GB
DT 17.67 0.06 177.0 MB

KNN 63.83 42.75 94.4 GB

these models’ corresponding time overheads behaved similarly
proportionally (except for SVR and KNN, whose synthesis
time was almost the same); (3) although synthesis time
overheads seemed large but they were for once only, while
the evaluation time was much less (mostly < 0.02 min per
instance, except for KNN, which took 0.2 min per instance).

Combining both the effectiveness data in Table III and
overhead data in Table IV, we would suggest DT as VI-
SION’s logic learner meta-model for practical usage, due to
its balanced effectiveness (second highest best accuracy) and
efficiency (similar evaluation time as linear meta-models, and
acceptable synthesis time and consumed space). Futhermore,
DT’s superiority over SVR shows that our treatment for
SynEva’s choice problem is effective.

Therefore, we answer RQ3 as follows: Both VISION’s time
and space overheads varied with different logic learner meta-
model choices (general acceptable), and the DT meta-model
best balanced the effectiveness and efficiency (thus preferred).

F. Threats Analysis

One possible threat concerns the internal validity of our
experimental conclusions, i.e., different parameter values in
training logic learners (e.g., k parameter for KNN and tree
depth for DT) can lead to varying performance. To alleviate
this threat, we mostly used default parameter values and
restricted DT’s maximal depth to be no more than 100. We
consider such treatments reasonable. Besides, our focus is not
to try all value combinations. Still, we obtained satisfactory
results for suggesting VISION’s practical usage.

V. RELATED WORK

Our work relates to quality assurance for DNN models. We
discuss representative work in recent years on three aspects,
namely, test adequacy, test input generation, and test oracle.

Test adequacy. Pei et al. [8] probably proposed the first
test adequacy criterion, neuron coverage (NC) for testing
DNN models. Ma et al. [9] extended NC with more fined-
grained criteria to distinguish the major functional and corner
behaviors of DNN models. Sun et al. [10] proposed four
coverage criteria concerning distinct features of DNN models,
inspired by the MC/DC. On the other hand, it was also
argued that such structural coverage criteria for testing DNN
models could be misleading if conducted when ignoring their
usage contexts [11], and a better suggestion is to conduct
the DNN testing under the operational context [28]. Kim
et al. [16] further introduced a special surprise adequacy to
measure the coverage of discretized input surprise ranges



for DL systems based on kernel density estimation (KDE)
and Euclidean distances. Similarly, our VISION measures the
scenario suitableness also by distance, but focuses on the
distance between knowledge and mirror programs from DNN
models, not on the coverage of DNN models themselves.

Test input generation. DeepXplore [8] proposed a white-
box differential testing technique to generate inputs for testing
DL systems. DeepTest [13] performed a greedy search with
different image transformations for detecting erroneous behav-
iors on CNNs and Recurrent Neural Networks (RNNs). Zhang
et al. [29] applied Generative Adversarial Network (GAN) to
conduct driving-scenario oriented test generation with various
artificial weather conditions. Instead of focusing on generating
new or adversarial inputs, our VISION emphasizes evaluating
existing inputs’ suitableness from given application scenarios
with respect to trained DNN models.

Test oracle. The oracle problem of DL programs is out-
standing and challenging. One popular solution is to use
metamorphic relations as alleviated test oracles, e.g., Ding
et al. [30] proposed 11 metamorphic relations specially for
testing DL systems. Differential testing is also another pop-
ular practice, which requests multiple implementations for
the same or similar specification(s) for the comparison, e.g.,
DeepXplore [8] and DeepTest [13]. SynEva [17], the prede-
cessor of VISION, instead uses behavioral differences between
knowledge and mirror models as the pseudo-oracle for the
comparison purpose. Our VISION inherits this nice idea, and
further improves it with respect to DNN characteristics.

VI. CONCLUSION

In this paper, we address the scenario suitableness evalua-
tion problem with respect to DNN models by proposing our
VISION approach. VISION builds on SynEva, and explicitly
addresses the latter’s three limitations on the overhead, choice,
and flow. Our experimental results show that VISION achieved
a better accuracy of 4.6–27.8% than SynEva on the scenario
suitableness evaluation regarding DNN models. Still, VISION
has room for improvement. For example, its suitableness
threshold should be more systematically obtained, and its logic
learner meta-models should be further improved for reducing
their training time and space overheads. We are working on
them, as well as validating the VISION idea on more large-
scale application scenarios.
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efficiency through conditioning,” arXiv preprint arXiv:1906.02533, 2019.

[29] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “DeepRoad: Gan-
based metamorphic testing and input validation framework for autonomous driving
systems,” in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. ACM, 2018, pp. 132–142.

[30] J. Ding, X. Kang, and X.-H. Hu, “Validating a deep learning framework by meta-
morphic testing,” in 2017 IEEE/ACM 2nd International Workshop on Metamorphic
Testing (MET). IEEE, 2017, pp. 28–34.


